Concept

Distance geometry

Concepts associés (4)
Trilatération
La trilatération est une méthode mathématique permettant de déterminer la position relative d'un point en utilisant la géométrie des triangles tout comme la triangulation. Mais contrairement à cette dernière, qui utilise les angles et les distances pour positionner un point, la trilatération utilise les distances entre un minimum de deux points de référence. La trilatération est notamment utilisée par le système de positionnement par satellites américain Global positioning system (GPS). Triangulation Catég
Formule de Héron
En géométrie euclidienne, la formule de Héron, portant le nom de Héron d'Alexandrie, permet de calculer l'aire S d'un triangle quelconque en ne connaissant que les longueurs a, b et c de ses trois côtés : La formule était déjà connue d'Archimède. Héron d'Alexandrie énonce et démontre son théorème dans son traité Les Métriques. Sa démonstration s'appuie sur les propriétés du cercle inscrit dans un triangle et sur l'exploitation des rapports de longueurs dans des triangles semblables.
Euclidean distance
In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occasionally being called the Pythagorean distance. These names come from the ancient Greek mathematicians Euclid and Pythagoras, although Euclid did not represent distances as numbers, and the connection from the Pythagorean theorem to distance calculation was not made until the 18th century.
Espace affine
En géométrie, la notion d'espace affine généralise la notion d'espace issue de la géométrie euclidienne en omettant les notions d'angle et de distance. Dans un espace affine, on peut parler d'alignement, de parallélisme, de barycentre. Sous la forme qui utilise des rapports de mesures algébriques, qui est une notion affine, le théorème de Thalès et le théorème de Ceva sont des exemples de théorèmes de géométrie affine plane réelle (c'est-à-dire n'utilisant que la structure d'espace affine du plan réel).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.