En géométrie euclidienne, la formule de Héron, portant le nom de Héron d'Alexandrie, permet de calculer l'aire S d'un triangle quelconque en ne connaissant que les longueurs a, b et c de ses trois côtés :
La formule était déjà connue d'Archimède.
Héron d'Alexandrie énonce et démontre son théorème dans son traité Les Métriques. Sa démonstration s'appuie sur les propriétés du cercle inscrit dans un triangle et sur l'exploitation des rapports de longueurs dans des triangles semblables.
Les propriétés trigonométriques permettent une démonstration plus courte de cette égalité.
Ainsi, la formule de Héron peut se déduire de manière algébrique de la loi des cosinus .
Il existe beaucoup d'autres démonstrations : voir notamment l'article « Loi des cotangentes ».
Il existe également un moyen simple de retrouver la formule de Héron par des considérations sur la forme que doit prendre le polynôme S en exploitant les propriétés des triangles plats, les propriétés d'homogénéité et de symétrie.
D'après les calculs intermédiaires ci-dessus, on a aussi :
On a : (déterminant de Cayley-Menger).
La formule de Héron présente une instabilité lors du calcul numérique, qui se manifeste pour les triangles en épingle, c'est-à-dire dont un côté est de dimension très petite par rapport aux autres (confrontation de petites et grandes valeurs).
En choisissant les noms de côtés de telle sorte que a > b > c, et en réorganisant les termes de façon à optimiser les grandeurs ajoutées ou soustraites, William Kahan propose une formule plus stable :
En trigonométrie sphérique, il existe une formule analogue à la formule de Héron qui permet de déduire l'aire d'un triangle sphérique à partir de ses côtés : elle est donnée par le théorème de l'Huilier.
Il existe des formulations analogues pour déterminer l'aire d'un quadrilatère, mais à moins qu'il soit inscriptible, la donnée supplémentaire d'angles ou des diagonales est nécessaire. Voir : Formule de Bretschneider et Formule de Brahmagupta.
Le volume d'un tétraèdre est donné en fonction de la longueur de ses arêtes par le déterminant de Cayley-Menger .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
En géométrie, un quadrilatère inscriptible (ou cyclique ) est un quadrilatère dont les sommets se trouvent tous sur un seul et même cercle. Les sommets sont dits cocycliques. Le quadrilatère est dit inscrit dans le cercle, et le cercle, circonscrit au quadrilatère. Un quadrilatère convexe est inscriptible si et seulement si les quatre médiatrices des côtés sont concourantes. Le point de concours est alors le centre du cercle circonscrit et les médiatrices des diagonales passent par ce point.
En mathématiques, la loi des cosinus est un théorème de géométrie couramment utilisé en trigonométrie, qui relie dans un triangle la longueur d'un côté à celles des deux autres et au cosinus de l'angle formé par ces deux côtés. Cette loi s'exprime de façon analogue en géométrie plane, sphérique ou hyperbolique. Cette loi généralise le théorème de Pythagore. Les Éléments d'Euclide contenaient déjà une approche géométrique de la généralisation du théorème de Pythagore dans deux cas particuliers : ceux d'un triangle obtusangle et d'un triangle acutangle.
This work contains the study of the algebra called al-Badī‘ fī al-ḥisāb (literally : "the Wonderful on calculation"), written by the Persian mathematician Abu Bakr Muḥammad ibn al-Ḥusain al-Karaǧi (previously known as ...
EPFL2009
Solar energy has seen tremendous advances in the past years. For thin film photovoltaics, which use less of the expensive semiconductor materials, insufficient light absorption can be a limiting factor. It is hoped that by using diffractive optics to impro ...