Concept

Wang tile

Concepts associés (4)
Pavage du plan
thumb|Pavage constitué de triangles équilatéraux et d'hexagones, dit pavage trihexagonal. thumb|Pavage hexagonal de tomettes provençales en terre cuite. Un pavage du plan est un ensemble de portions du plan, par exemple des polygones, dont l'union est le plan tout entier, sans recouvrement. Plus précisément, c'est une partition du plan euclidien par des éléments d'un ensemble fini, appelés « carreaux » (plus précisément, ce sont des compacts d’intérieur non vide).
Pavage de Penrose
vignette|Un pavage de Penrose|alt= vignette|Roger Penrose, debout sur le pavage de Penrose du foyer de l'institut Mitchell, Texas A&M University|alt= Les pavages de Penrose sont, en géométrie, des pavages du plan découverts par le mathématicien et physicien britannique Roger Penrose dans les années 1970. En 1984, ils ont été utilisés comme un modèle intéressant de la structure des quasi-cristaux.
Pavage apériodique
En mathématiques, et plus particulièrement en géométrie, un pavage apériodique est un pavage non périodique ne contenant pas de sections périodiques arbitrairement grandes. Les pavages de Penrose sont les exemples les plus connus de pavages apériodiques, mais il existe plusieurs autres méthodes pour en construire. Les pavages apériodiques servent de modèles mathématiques pour les quasi-cristaux, des objets physiques découverts en 1982 par Dan Shechtman, mais dont la structure locale exacte est encore mal comprise.
Quasi-cristal
Un quasi-cristal est un solide qui possède un spectre de diffraction essentiellement discret (comme les cristaux classiques) mais dont la structure n'est pas périodique (alors que les cristaux classiques sont périodiques). Découverts en , les quasi-cristaux ont mis fin à une certitude qui durait depuis deux siècles, restreignant la notion d'ordre à celle de périodicité. En 1992, l'Union internationale de cristallographie a modifié la définition d'un cristal pour englober celle d'un quasi-cristal, en ne retenant que le critère de diffraction essentiellement discrète.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.