Quantum networkQuantum networks form an important element of quantum computing and quantum communication systems. Quantum networks facilitate the transmission of information in the form of quantum bits, also called qubits, between physically separated quantum processors. A quantum processor is a small quantum computer being able to perform quantum logic gates on a certain number of qubits. Quantum networks work in a similar way to classical networks. The main difference is that quantum networking, like quantum computing, is better at solving certain problems, such as modeling quantum systems.
Impossibilité du clonage quantiqueLe théorème d'impossibilité du clonage quantique est un résultat de mécanique quantique qui interdit la copie à l'identique d'un état quantique inconnu et arbitraire. Il a été énoncé en 1982 par Wootters, Zurek, et Dieks. Ce théorème a d'importantes conséquences en informatique quantique. Par exemple, il fait en sorte qu'il est impossible d'adapter un code quantique directement du code de répétition de la théorie des codes classique. Ceci rend la tâche d'élaborer un code quantique difficile par rapport aux codes classiques.
Information quantiqueLa théorie de l'information quantique, parfois abrégée simplement en information quantique, est un développement de la théorie de l'information de Claude Shannon exploitant les propriétés de la mécanique quantique, notamment le principe de superposition ou encore l'intrication. L'unité qui est utilisée pour quantifier l'information quantique est le qubit, par analogie avec le bit d'information classique.
Code stabilisateurUn code stabilisateur est un code quantique autocorrecteur qui protège k qubits en les encodant dans n qubits (avec nécessairement ). La mise en œuvre d'ordinateurs quantiques se heurte aux difficultés introduites par la présence de bruits, d'origine externe ou interne au système quantique construit, et qui perturbent les distributions probabilistes des états intriqués mesurés en fin de calcul.
No-deleting theoremIn physics, the no-deleting theorem of quantum information theory is a no-go theorem which states that, in general, given two copies of some arbitrary quantum state, it is impossible to delete one of the copies. It is a time-reversed to the no-cloning theorem, which states that arbitrary states cannot be copied. This theorem seems remarkable, because, in many senses, quantum states are fragile; the theorem asserts that, in a particular case, they are also robust. Physicist Arun K. Pati along with Samuel L.
Problème de la mesure quantiqueLe problème de la mesure quantique consiste en un ensemble de problèmes, qui mettent en évidence des difficultés de corrélation entre les postulats de la mécanique quantique et le monde macroscopique tel qu'il nous apparaît ou tel qu'il est mesuré.
Quantum algorithmIn quantum computing, a quantum algorithm is an algorithm which runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical (or non-quantum) algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a quantum computer.
Cryptographie quantiqueLa cryptographie quantique consiste à utiliser les propriétés de la physique quantique pour établir des protocoles de cryptographie qui permettent d'atteindre des niveaux de sécurité qui sont prouvés ou conjecturés non atteignables en utilisant uniquement des phénomènes classiques (c'est-à-dire non-quantiques). Un exemple important de cryptographie quantique est la distribution quantique de clés, qui permet de distribuer une clé de chiffrement secrète entre deux interlocuteurs distants, tout en assurant la sécurité de la transmission grâce aux lois de la physique quantique et de la théorie de l'information.
Categorical quantum mechanicsCategorical quantum mechanics is the study of quantum foundations and quantum information using paradigms from mathematics and computer science, notably . The primitive objects of study are physical processes, and the different ways that these can be composed. It was pioneered in 2004 by Samson Abramsky and Bob Coecke. Categorical quantum mechanics is entry 18M40 in MSC2020. Mathematically, the basic setup is captured by a : composition of morphisms models sequential composition of processes, and the tensor product describes parallel composition of processes.
Linear optical quantum computingLinear optical quantum computing or linear optics quantum computation (LOQC) is a paradigm of quantum computation, allowing (under certain conditions, described below) universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments (including reciprocal mirrors and waveplates) to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.