Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des réseaux neuronaux convolutifs, couvrant les couches entièrement connectées, les convolutions, la mise en commun, les traductions PyTorch et des applications telles que l'estimation de pose à la main et l'estimation de tubalité.
Couvre les bases de l'apprentissage automatique, y compris l'apprentissage supervisé et non supervisé, la régression, la classification et le regroupement.
Couvre la classification des images, le clustering et les techniques d'apprentissage automatique telles que la réduction de la dimensionnalité et l'apprentissage par renforcement.
Explore la bioélectronique, les types de cécité et les implants rétiniens pour restaurer la vision, couvrant les défis et les progrès des technologies de vision artificielle.
Explore les mathématiques de l'apprentissage profond, les réseaux neuronaux et leurs applications dans les tâches de vision par ordinateur, en abordant les défis et le besoin de robustesse.
Explore la conception et le développement d'un imageur 3D rapide sur une puce, en se concentrant sur les tableaux de détection à photon unique et les mesures de temps de vol.