Application propreEn mathématiques, une application est dite propre si elle vérifie une certaine propriété topologique. La définition la plus courante, valable pour une application continue d'un espace séparé dans un espace localement compact, est que l'application est propre si l' de toute partie compacte de l'espace d'arrivée est compacte. Cette définition est équivalente, dans ce contexte, à la définition générale : une application (non nécessairement continue et entre espaces topologiques quelconques) est propre si elle est « universellement fermée ».
Fonction de plusieurs variablesEn mathématiques et plus spécialement en analyse vectorielle, une fonction numérique à plusieurs variables réelles est une fonction dont l'ensemble de départ E est une partie du produit cartésien . L'ensemble d'arrivée F peut être ou . Le second cas peut se ramener au premier cas en considérant qu'il s'agit en réalité de p fonctions de dans appelées fonctions coordonnées. La fonction est donc une relation associant à chaque n-uplet x = (x, x, ...
Applications ouvertes et ferméesEn mathématiques, et plus précisément en topologie, une application ouverte est une application entre deux espaces topologiques envoyant les ouverts de l'un vers des ouverts de l'autre. De même, une application fermée envoie les fermés du premier espace vers des fermés du second. Soit deux espaces topologiques X et Y ; on dit qu'une application f de X vers Y est ouverte si pour tout ouvert U de X, l' f(U) est ouverte dans Y ; de même, on dit que f est fermée si pour tout fermé U de X, l'image f(U) est fermée dans Y.
HypersurfaceEn géométrie, une hypersurface est une généralisation du concept d'hyperplan, de courbe plane et de surface. Une hypersurface est une variété de dimension N - 1, qui est intégrée dans un espace de dimension N, généralement un espace euclidien ou un espace affine. Dans une espace de dimension 3, une hypersurface est une surface Dans une espace de dimension 2, une hypersurface est une ligne Une hypersurface est souvent définie par une seule équation du type f(x1,x2,...xN)=0.