La théorie métabolique de l'écologie (MTE, pour Metabolic theory of ecology en anglais), est une théorie quantitative qui permet d'expliquer le lien entre le métabolisme, la taille des individus et leur température.
Elle fut introduite par Arrhenius et Kleiber et synthétisée en 2004 dans un article rédigé par J.H Brown et al., "Toward a metabolic theory of ecology".
Cette théorie prédit comment le métabolisme contrôle les processus écologiques à l'échelle des individus, des populations et des écosystèmes.
vignette|Mécanismes à la base de la MTE
Le métabolisme d'un organisme correspond à l'ensemble des transformations biochimiques qui se produisent à l'intérieur de son corps. Les organismes prélèvent l'énergie nécessaire à leur métabolisme dans leur environnement. Les besoins énergétiques varient d'un organisme à l'autre, en fonction de leur taille et leur température corporelle.
La théorie métabolique, bien que reprise par de nombreux travaux en écologie, rencontre actuellement des limites, et est fortement controversée.
Des progrès récents ont permis de comprendre le rôle de la température, de la taille du corps et la de stœchiométrie dans les mécanismes biologiques. Ces paramètres agissant à des niveaux d’organisation moléculaire, cellulaire et à celui de l’organisme tout entier, ont permis de fonder une théorie métabolique de l’écologie.
La théorie métabolique relie la performance individuelle des organismes à l’écologie des populations, des communautés et des écosystèmes.
Le métabolisme est un processus biologique unique qui obéit à des principes physiques et chimiques qui gouvernent la transformation d’énergie et de matière. Il détermine les demandes que les organismes placent dans leur environnement pour toutes les ressources et simultanément définit de puissantes contraintes sur l’allocation des ressources à toutes les composantes de la fitness.
Le taux métabolique est fondamental en biologie. Il représente la vitesse à laquelle les organismes absorbent, transforment et allouent l’énergie et la matière.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|400px|Figure 1. Taille en fonction du métabolisme pour différentes especes. Graphique original de Kleiber (1947). La loi de Kleiber, formulée par le biologiste au début des années 1930, énonce que pour la majorité des vertébrés supérieurs, le métabolisme est proportionnel à la masse corporelle élevée à la puissance 3⁄4. Algébriquement, si l'on convient de noter q0 le métabolisme et M la masse corporelle de l'animal, q04 ~ M3. Ainsi, puisqu'un chat est 100 fois plus lourd qu'une souris, son métabolisme est environ 32 fois plus consommateur d'énergie.
En biologie du développement des organismes, l’allométrie est le fait que des organes, tissus ou processus croissent à des vitesses différentes. On présuppose que ces phénomènes de croissance sont régis par des lois mathématiques que l'on peut découvrir. Le terme allométrie (« allo » vient du grec allos = « autres », donc dans ce cas « autre que métrique », c’est-à-dire non linéaire) a été repris en 1936 par Julian Huxley et Georges Teissier en tant que désignation conventionnelle, en biologie, des phénomènes de croissance différentielle d'organes, dans la mesure où ils tombent sous une loi de forme mathématique spécifiée.
Evolutionary physiology is the study of the biological evolution of physiological structures and processes; that is, the manner in which the functional characteristics of individuals in a population of organisms have responded to natural selection across multiple generations during the history of the population. It is a sub-discipline of both physiology and evolutionary biology. Practitioners in the field come from a variety of backgrounds, including physiology, evolutionary biology, ecology, and genetics.
Explore les effets thermiques, les échangeurs de chaleur, les taux métaboliques, la consommation d'énergie chez les insectes et la dynamique des effets thermiques.
IntroductionDesulfitobacterium hafniense was isolated for its ability to use organohalogens as terminal electron acceptors via organohalide respiration (OHR). In contrast to obligate OHR bacteria, Desulfitobacterium spp. show a highly versatile energy meta ...
FRONTIERS MEDIA SA2023
,
Allometric scaling relations are widely used to link biological processes in nature. They are typically expressed as power laws, postulating that the metabolic rate of an organism scales as its mass to the power of an allometric exponent, which ranges betw ...
2024
,
Catchments are heterogeneous ecosystems involving several abiotic and biotic processes, where the mutual interactions among water, vegetation, and biogeochemical fluxes take place at different scales. Many biological processes in nature are characterized b ...