Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The metabolic theory of ecology (MTE) is the ecological component of the more general Metabolic Scaling Theory and Kleiber's law. It posits that the metabolic rate of organisms is the fundamental biological rate that governs most observed patterns in ecology. MTE is part of a larger set of theory known as metabolic scaling theory that attempts to provide a unified theory for the importance of metabolism in driving pattern and process in biology from the level of cells all the way to the biosphere. MTE is based on an interpretation of the relationships between body size, body temperature, and metabolic rate across all organisms. Small-bodied organisms tend to have higher mass-specific metabolic rates than larger-bodied organisms. Furthermore, organisms that operate at warm temperatures through endothermy or by living in warm environments tend towards higher metabolic rates than organisms that operate at colder temperatures. This pattern is consistent from the unicellular level up to the level of the largest animals and plants on the planet. In MTE, this relationship is considered to be the primary constraint that influences biological processes (via their rates and times) at all levels of organization (from individual up to ecosystem level). MTE is a macroecological theory that aims to be universal in scope and application. Metabolic pathways consist of complex networks, which are responsible for the processing of both energy and material. The metabolic rate of a heterotroph is defined as the rate of respiration in which energy is obtained by oxidation of carbon compound. The rate of photosynthesis on the other hand, indicates the metabolic rate of an autotroph. According to MTE, both body size and temperature affect the metabolic rate of an organism. Metabolic rate scale as 3/4 power of body size, and its relationship with temperature is described by Van’t Hoff-Arrhenius equation over the range of 0 to 40 °C. From the ecological perspective, stoichiometry is concerned with the proportion of elements in both living organisms and their environment.
Sara Bonetti, Francesca Bassani
Christof Holliger, Julien Maillard, Romain Hamelin, Mathilde Stéphanie Willemin, Florence Armand
Sara Bonetti, Francesca Bassani