Résumé
Transportation forecasting is the attempt of estimating the number of vehicles or people that will use a specific transportation facility in the future. For instance, a forecast may estimate the number of vehicles on a planned road or bridge, the ridership on a railway line, the number of passengers visiting an airport, or the number of ships calling on a seaport. Traffic forecasting begins with the collection of data on current traffic. This traffic data is combined with other known data, such as population, employment, trip rates, travel costs, etc., to develop a traffic demand model for the current situation. Feeding it with predicted data for population, employment, etc. results in estimates of future traffic, typically estimated for each segment of the transportation infrastructure in question, e.g., for each roadway segment or railway station. The current technologies facilitate the access to dynamic data, big data, etc., providing the opportunity to develop new algorithms to improve greatly the predictability and accuracy of the current estimations. Traffic forecasts are used for several key purposes in transportation policy, planning, and engineering: to calculate the capacity of infrastructure, e.g., how many lanes a bridge should have; to estimate the financial and social viability of projects, e.g., using cost–benefit analysis and social impact assessment; and to calculate environmental impacts, e.g., air pollution and noise. Within the rational planning framework, transportation forecasts have traditionally followed the sequential four-step model or urban transportation planning (UTP) procedure, first implemented on mainframe computers in the 1950s at the Detroit Metropolitan Area Traffic Study and Chicago Area Transportation Study (CATS). Land-use forecasting starts the process. Typically, forecasts are made for the region as a whole, e.g., of population growth. Such forecasts provide control totals for the local land use analysis. Typically, the region is divided into zones and by trend or regression analysis, the population and employment are determined for each.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
HUM-124(b): Global issues: mobility B
Human and freight mobility in large cities is a complex process with dense population and many transport modes to compete for limited space. New emerging modes of transport, such as on-demand services
CIVIL-457: Fundamentals of traffic operations and control
The objectives of this course are to present the major elements of traffic operations and to develop basic skills in applying the fundamentals of traffic analysis and control. Students should be able
CIVIL-349: Traffic engineering
Introduce the major elements of transportation systems and traffic engineering-Develop analytical and technical skills in applying the fundamentals of the transport field-Understand the key concepts a
Afficher plus
Séances de cours associées (25)
Algorithme Metropolis-Hastings : mise en œuvre et étude de cas
Explore l'algorithme Metropolis-Hastings et son application dans un modèle de choix de mode de transport.
Prévision de la demande : méthodes et étapes
Discute de la gestion de la demande, des méthodes de prévision et des étapes de la prévision de la demande, en soulignant l'importance de prévisions précises.
Procédures d'estimation du trafic
Explore les procédures d'estimation des essieux standard équivalents au fil du temps en fonction de la structure de la circulation et des classes de véhicules, en soulignant l'importance de données précises pour la planification des infrastructures routières.
Afficher plus
Publications associées (152)

On distributional autoregression and iterated transportation

Victor Panaretos, Laya Ghodrati

We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of Double-struck capital R. An order-1 autoregressive model in this context is to be understood as a Markov chain, where ...
Hoboken2024
Afficher plus
Concepts associés (9)
Trip generation
Trip generation is the first step in the conventional four-step transportation forecasting process used for forecasting travel demands. It predicts the number of trips originating in or destined for a particular traffic analysis zone (TAZ). Trip generation analysis focuses on residences and residential trip generation is thought of as a function of the social and economic attributes of households. At the level of the traffic analysis zone, residential land uses "produce" or generate trips.
Trip distribution
Trip distribution (or destination choice or zonal interchange analysis) is the second component (after trip generation, but before mode choice and route assignment) in the traditional four-step transportation forecasting model. This step matches tripmakers’ origins and destinations to develop a “trip table”, a matrix that displays the number of trips going from each origin to each destination. Historically, this component has been the least developed component of the transportation planning model.
Choix modal
Le choix modal est le choix qu'effectuent les voyageurs, ou les personnes responsables du transport de marchandises, sur le mode utilisé pour effectuer un trajet entre deux points. Lorsqu'une modification des conditions de transport intervient sur le mode habituellement utilisé par ces voyageurs ou marchandises, ou qu'une amélioration d'un mode concurrent intervient, un phénomène de report modal (ou transfert modal) peut intervenir. L'analyse du choix modal est utilisée dans la planification des infrastructures de transport.
Afficher plus