Bio-informatiqueLa bioinformatique (ou bio-informatique), est un champ de recherche multidisciplinaire de la biotechnologie où travaillent de concert biologistes, médecins, informaticiens, mathématiciens, physiciens et bioinformaticiens, dans le but de résoudre un problème scientifique posé par la biologie. Plus généralement, la bio-informatique est l'application de la statistique et de l'informatique à la science biologique. Le spécialiste qui travaille à mi-chemin entre ces sciences et l'informatique est appelé bioinformaticien ou bionaute.
Segmentation (marketing)vignette|Celle ci parle du tranche d'âge des enfants qui pourront fréquenter les différentes market qui existent La segmentation d'un marché consiste à le découper analytiquement en sous-marchés homogènes. Cette analyse se pratique en particulier mais pas uniquement dans le domaine du marketing. La segmentation dite « de ciblage », ou de détermination des couples produit-marché, vise à qualifier et à quantifier la relation qui peut exister entre le produit et son marché.
Méthode de Monte-Carlo par chaînes de MarkovLes méthodes de Monte-Carlo par chaînes de Markov, ou méthodes MCMC pour Markov chain Monte Carlo en anglais, sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes de Monte-Carlo se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner. Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (algorithme de Metropolis-Hastings, échantillonnage de Gibbs), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive).
Similarity measureIn statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics: they take on large values for similar objects and either zero or a negative value for very dissimilar objects. Though, in more broad terms, a similarity function may also satisfy metric axioms.
Exploratory data analysisIn statistics, exploratory data analysis (EDA) is an approach of analyzing data sets to summarize their main characteristics, often using statistical graphics and other data visualization methods. A statistical model can be used or not, but primarily EDA is for seeing what the data can tell us beyond the formal modeling and thereby contrasts traditional hypothesis testing. Exploratory data analysis has been promoted by John Tukey since 1970 to encourage statisticians to explore the data, and possibly formulate hypotheses that could lead to new data collection and experiments.
Statistique multivariéeEn statistique, les analyses multivariées ont pour caractéristique de s'intéresser à des lois de probabilité à plusieurs variables. Les analyses bivariées sont des cas particuliers à deux variables. Les analyses multivariées sont très diverses selon l'objectif recherché, la nature des variables et la mise en œuvre formelle. On peut identifier deux grandes familles : celle des méthodes descriptives (visant à structurer et résumer l'information) et celle des méthodes explicatives visant à expliquer une ou des variables dites « dépendantes » (variables à expliquer) par un ensemble de variables dites « indépendantes » (variables explicatives).
Recherche des plus proches voisinsLa recherche des plus proches voisins, ou des k plus proches voisins, est un problème algorithmique classique. De façon informelle le problème consiste, étant donné un point à trouver, dans un ensemble d'autres points, quels sont les k plus proches. La recherche de voisinage est utilisée dans de nombreux domaines, tels la reconnaissance de formes, le clustering, l'approximation de fonctions, la prédiction de séries temporelles et même les algorithmes de compression (recherche d'un groupe de données le plus proche possible du groupe de données à compresser pour minimiser l'apport d'information).
Orange (logiciel)Orange is an open-source data visualization, machine learning and data mining toolkit. It features a visual programming front-end for explorative qualitative data analysis and interactive data visualization. Orange is a component-based visual programming software package for data visualization, machine learning, data mining, and data analysis. Orange components are called widgets. They range from simple data visualization, subset selection, and preprocessing to empirical evaluation of learning algorithms and predictive modeling.
Scikit-learnScikit-learn est une bibliothèque libre Python destinée à l'apprentissage automatique. Elle est développée par de nombreux contributeurs notamment dans le monde académique par des instituts français d'enseignement supérieur et de recherche comme Inria. Elle propose dans son framework de nombreuses bibliothèques d’algorithmes à implémenter, clé en main. Ces bibliothèques sont à disposition notamment des data scientists. Elle comprend notamment des fonctions pour estimer des forêts aléatoires, des régressions logistiques, des algorithmes de classification, et les machines à vecteurs de support.
Fléau de la dimensionLe fléau de la dimension ou malédiction de la dimension (curse of dimensionality) est un terme inventé par Richard Bellman en 1961 pour désigner divers phénomènes qui ont lieu lorsque l'on cherche à analyser ou organiser des données dans des espaces de grande dimension alors qu'ils n'ont pas lieu dans des espaces de dimension moindre. Plusieurs domaines sont concernés et notamment l'apprentissage automatique, la fouille de données, les bases de données, l'analyse numérique ou encore l'échantillonnage.