Mesure régulièreEn théorie de la mesure, une mesure régulière est une mesure sur un espace topologique séparé mesuré qui vérifie deux propriétés qui lient mesure et topologie. Quelques énoncés qui posent des conditions topologiques assez couramment remplies permettent de garantir la régularité d'une mesure de Borel. Une mesure (positive) définie sur une tribu contenant la tribu borélienne d'un espace séparé X est dite régulière lorsqu'elle est à la fois intérieurement régulière et extérieurement régulière, c'est-à-dire lorsque : pour tout élément de la tribu, ; pour tout élément de la tribu, .
Mesure gaussienneEn analyse, les mesures gaussiennes sont des mesures qui ont une avec une densité normale sur . Une mesure de probabilité de Borel sur est une mesure gaussienne si l'une des deux conditions suivantes est vérifiée : c'est la mesure de Dirac en un point elle a la forme suivante par rapport à la mesure de Lebesgue. Le second cas est dit non dégénéré. Une mesure de probabilité de Borel sur est une mesure gaussienne si pour toute fonctionnelle linéaire , la mesure est une mesure gaussienne sur .
Mesure de RadonIn mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.