Le moscovium (symbole Mc) est l'élément chimique de numéro atomique 115. Il correspond à l'ununpentium (Uup) de la dénomination systématique de l'UICPA, et est encore appelé dans la littérature. Il a été synthétisé pour la première fois en par les réactions et au Joint Institute for Nuclear Research (JINR) à Dubna, en Russie, par une équipe américano-russe intégrant des chercheurs du Lawrence Livermore National Laboratory (LLNL). L'UICPA a validé son identification le , et lui a donné son nom définitif le en référence à l'oblast de Moscou, dans lequel il a été observé pour la première fois.
Il s'agit d'un transactinide très radioactif, dont l'isotope connu le plus stable, le Mc, a une période radioactive de . Situé sous le bismuth dans le tableau périodique des éléments, il est possible que ses propriétés chimiques, si elles pouvaient être étudiées, l'apparentent à un métal pauvre.
L'ancien nom ununpentium relève de la dénomination systématique attribuée par l'Union internationale de chimie pure et appliquée (UICPA) aux éléments chimiques inobservés ou dont la caractérisation expérimentale n'est pas formellement validée. Il est composé de racines gréco-latines signifiant « un-un-cinq » et du suffixe -ium générique pour les noms d'éléments chimiques.
Le , le nihonium et le moscovium ont été obtenus par une équipe de scientifiques russes (de l'Institut unifié de recherches nucléaires, JINR) et américains (du Laboratoire national de Lawrence Livermore, LLNL). Ils ont bombardé de l' avec du pour produire quatre atomes de moscovium qui se sont transmutés en nihonium après environ . Cette durée de vie, assez longue pour des éléments aussi massifs, a renforcé l'hypothèse de l'existence d'un îlot de stabilité pour des noyaux super lourds.
⟶ ⟶ + 3 ⟶ + α.
⟶ ⟶ + 4 ⟶ + α.
Cette découverte a été confirmée par l'UICPA le .
Le , une équipe suédoise semble confirmer l'existence de cet élément 115. Cette découverte est confirmée par l'UICPA le .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La notion d’éléments-traces métalliques, ou ETM tend à remplacer celle de métaux lourds mal définie car englobant des métaux toxiques réellement lourds à d'autres (métalloïdes) l'étant moins. Tous les ETM sont toxiques ou toxiques au-delà d'un certain seuil et certains sont radioactifs (radionucléides). Leurs concentrations environnementales (eau, air, sol, organismes) résultent d'apports anthropiques (industrie, transports...
Le roentgenium, roentgénium, röntgenium ou rœntgénium, prononcé ou selon la graphie (symbole Rg) est l'élément chimique de numéro atomique 111. Il correspond à l'unununium (Uuu) de la dénomination systématique de l'IUPAC, et est encore appelé dans la littérature. Il a été synthétisé pour la première fois en par une réaction au Gesellschaft für Schwerionenforschung (GSI) de Darmstadt, en Allemagne, et son identification a été validée par l'IUPAC en . Il a reçu son nom définitif en en l'honneur du Wilhelm Röntgen, le découvreur des rayons X.
On qualifie de transactinide tout élément chimique dont le numéro atomique est supérieur à celui du lawrencium (103), le dernier des actinides. Les transactinides sont également appelés éléments superlourds. Ce sont, par définition, également des transuraniens, ayant un numéro atomique supérieur à celui de l'uranium (92).
Couvre la conception et l'analyse des inhibiteurs des médicaments covalents de prochaine génération, en mettant l'accent sur l'engagement ciblé et l'importance du ciblage de la cystéine.
S'insère dans les fondamentaux de la chimie médicinale, mettant l'accent sur l'interrogation des relations structure-activité (SAR) dans la conception des drogues.
Explore les modèles de jouets, les sigma-algèbres, les variables aléatoires à valeur T, les mesures et l'indépendance dans la théorie des probabilités.
Curbing and capturing CO2 emissions is no longer enough to cope with the demanding environmental challenges of the coming years. Long-term storage technologies need deployment, to help industrial sectors to reach ambitious emission standards. Mineral carbo ...
2023
,
Here, we demonstrate the incorporation of monovalent cation additives into CH3NH3PbI3 perovskite in order to adjust the optical, excitonic, and electrical properties. The possibility of doping was investigated by adding monovalent cation halides with simil ...
Journal Of Visualized Experiments2017
This thesis presents the results of a time-dependent analysis of B0→D∓π± decays using 3fb−1 of
proton-proton collision data collected
with the LHCb detector at CERN's Large Hadron Collider during Run 1 with a centre-of-mass ener ...