Calcul différentielalt=|vignette| Le graphe d'une fonction arbitraire (bleu). Graphiquement, la dérivée de en est la pente de la droite orange (tangente à la courbe en ). En mathématiques, le calcul différentiel est un sous-domaine de l'analyse qui étudie les variations locales des fonctions. C'est l'un des deux domaines traditionnels de l'analyse, l'autre étant le calcul intégral, utilisé notamment pour calculer l'aire sous une courbe.
Connexion (mathématiques)En géométrie différentielle, la connexion est un outil pour réaliser le transport parallèle. Il existe plusieurs présentations qui dépendent de l'utilisation faite. Cette notion a été développée au début des années 1920 par Élie Cartan et Hermann Weyl (avec comme cas particulier celle de connexion affine), puis reformulée en 1951 par Charles Ehresmann et Jean-Louis Koszul. Connexion de Koszul La connexion de Koszul est un opérateur sur des espaces de sections.
Fluxion (analyse)thumb|Page de titre de l'ouvrage de Newton The Method of Fluxions and Infinite Series (première édition, 1736). En mathématiques, fluxion est le terme utilisé par le mathématicien et physicien Isaac Newton pour désigner la vitesse à laquelle une quantité variable (appelée fluente) varie au cours du temps. Cette notion est une alternative à celle des infiniment petits proposée par Leibniz pour traiter le calcul différentiel. Si désigne une quantité variable, Newton désigne par sa fluxion.