Concept

H-cobordism

Résumé
In geometric topology and differential topology, an (n + 1)-dimensional cobordism W between n-dimensional manifolds M and N is an h-cobordism (the h stands for homotopy equivalence) if the inclusion maps are homotopy equivalences. The h-cobordism theorem gives sufficient conditions for an h-cobordism to be trivial, i.e., to be C-isomorphic to the cylinder M × [0, 1]. Here C refers to any of the categories of smooth, piecewise linear, or topological manifolds. The theorem was first proved by Stephen Smale for which he received the Fields Medal and is a fundamental result in the theory of high-dimensional manifolds. For a start, it almost immediately proves the generalized Poincaré conjecture. Before Smale proved this theorem, mathematicians became stuck while trying to understand manifolds of dimension 3 or 4, and assumed that the higher-dimensional cases were even harder. The h-cobordism theorem showed that (simply connected) manifolds of dimension at least 5 are much easier than those of dimension 3 or 4. The proof of the theorem depends on the "Whitney trick" of Hassler Whitney, which geometrically untangles homologically-tangled spheres of complementary dimension in a manifold of dimension >4. An informal reason why manifolds of dimension 3 or 4 are unusually hard is that the trick fails to work in lower dimensions, which have no room for entanglement. Let n be at least 5 and let W be a compact (n + 1)-dimensional h-cobordism between M and N in the category C=Diff, PL, or Top such that W, M and N are simply connected, then W is C-isomorphic to M × [0, 1]. The isomorphism can be chosen to be the identity on M × {0}. This means that the homotopy equivalence between M and N (or, between M × [0, 1], W and N × [0, 1]) is homotopic to a C-isomorphism. For n = 4, the h-cobordism theorem is true topologically (proved by Michael Freedman using a 4-dimensional Whitney trick) but is false PL and smoothly (as shown by Simon Donaldson).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.