Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Explore un cadre unifié pour la compréhension et l'évaluation de modèles de séquences génériques d'ADN/ARN ou de protéines, couvrant des sujets tels que la coévolution, la conservation et différents modèles tels que GREMLIN et BERT.
Couvre l'utilisation de transformateurs en robotique, en se concentrant sur la perception incarnée et les applications innovantes dans la locomotion humanoïde et l'apprentissage du renforcement.
Explore l'intelligence visuelle, la formation d'images, la vision par ordinateur et la compréhension de la représentation dans les machines et les esprits.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Explore l'analyse du modèle neuronal en PNL, couvrant les études d'évaluation, de sondage et d'ablation pour comprendre le comportement et l'interprétabilité du modèle.
Couvre les concepts clés de l'apprentissage par renforcement, des réseaux neuronaux, du clustering et de l'apprentissage non supervisé, en mettant l'accent sur leurs applications et leurs défis.