Espace pointéEn topologie, un espace pointé est un espace topologique dont on spécifie un point particulier comme étant le point de base. Formellement, il s'agit donc d'un couple (E, x) pour lequel x est un élément de E. Une application pointée entre deux espaces pointés est une application continue préservant les points de base. Les espaces pointés sont les objets d'une catégorie, notée parfois Top, dont les morphismes sont les applications pointées. Cette catégorie admet le point comme objet nul.
Rose (topology)In mathematics, a rose (also known as a bouquet of n circles) is a topological space obtained by gluing together a collection of circles along a single point. The circles of the rose are called petals. Roses are important in algebraic topology, where they are closely related to free groups. A rose is a wedge sum of circles. That is, the rose is the quotient space C/S, where C is a disjoint union of circles and S a set consisting of one point from each circle. As a cell complex, a rose has a single vertex, and one edge for each circle.
Produit libreEn mathématiques, et plus particulièrement en théorie des groupes, le produit libre de deux groupes G et H est un nouveau groupe, noté G∗H, qui contient G et H comme sous-groupes, est engendré par les éléments de ces sous-groupes, et constitue le groupe « le plus général » possédant ces propriétés. Le produit libre est le coproduit, ou « somme », dans la catégorie des groupes, c'est-à-dire que la donnée de deux morphismes, de G et H dans un même groupe K, équivaut à celle d'un morphisme de G∗H dans K.
Somme amalgaméevignette|Diagramme commutatif traduisant la propriété universelle de la somme amalgamée. En mathématiques, la somme amalgamée est une opération entre deux ensembles constituant les espaces d'arrivée de deux applications définies sur un même troisième ensemble. Le résultat satisfait une propriété universelle de factorisation de diagrammes, duale de celle du produit fibré et qui peut être valable dans d'autres catégories que celle des ensembles, comme celle des groupes.
Catégorie des espaces topologiquesEn mathématiques, la catégorie des espaces topologiques est une construction qui rend compte abstraitement des propriétés générales observées dans l'étude des espaces topologiques. Ce n'est pas la seule catégorie qui possède les espaces topologiques comme objet, et ses propriétés générales sont trop faibles ; cela motive la recherche de « meilleures » catégories d'espaces. C'est un exemple de catégorie topologique.