Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The graph coloring problem is one of the most famous problems in graph theory and has a large range of applications. It consists in coloring the vertices of an undirected graph with a given number of colors such that two adjacent vertices get different col ...
Graph theory experienced a remarkable increase of interest among the scientific community during the last decades. The vertex coloring problem (Min Coloring) deserves a particular attention rince it has been able to capture a wide variety of applications. ...
We consider the coloring problem for mixed graphs, that is, for graphs containing edges and arcs. A mixed coloring c is a coloring such that for every edge [xi,xj], c(xi)=c(xj) and for every arc (xp,xq), $c(x_{p})
An extension of the basic image reconstruction problem in discrete tomography is considered: given a graph G=(V,E) and a family P of chains Pi together with vectors h(Pi)=(hi1,...,hik), one wants to find a partition $V^{1},. ...
We are interested in coloring the vertices of a mixed graph, i.e., a graph containing edges and arcs. We consider two different coloring problems: in the first one we want adjacent vertices to have different colors and the tail of an arc to get a color str ...
We consider vertex k-colorings of an arbitrary simple, connected, and undirected graph G=(V,E) such that, for every vertex v, at most lambda different colors occur in the closed neighborhood of v. These colorings are called (k,lambda)-colorings. If a graph ...
We study online partitioning of posets from a graph theoretical point of view, which is coloring and cocoloring in comparability graphs. For the coloring problem, we analyse the First-Fit algorithm and show a ratio of O(n); furthermore, we devise ...
Graph theory is an important topic in discrete mathematics. It is particularly interesting because it has a wide range of applications. Among the main problems in graph theory, we shall mention the following ones: graph coloring and the Hamiltonian circuit ...
Let G = (V, E) be a graph with vertex set V and edge set E. The k-coloring problem is to assign a color (a number chosen in {1, ..., k}) to each vertex of G so that no edge has both endpoints with the same color. We propose a new local search methodology, ...
Combinatorial optimization problems related to permutations have been widely studied. Here, we consider different generalizations of the usual coloring problem in permutation graphs. A cocoloring is a partition of a permutation into increasing and decreasi ...