This article concerns the rotation operator, as it appears in quantum mechanics.
With every physical rotation , we postulate a quantum mechanical rotation operator which rotates quantum mechanical states.
In terms of the generators of rotation,
where is rotation axis, is angular momentum, and is the reduced Planck constant.
Translation operator (quantum mechanics)
The rotation operator , with the first argument indicating the rotation axis and the second the rotation angle, can operate through the translation operator for infinitesimal rotations as explained below. This is why, it is first shown how the translation operator is acting on a particle at position x (the particle is then in the state according to Quantum Mechanics).
Translation of the particle at position to position :
Because a translation of 0 does not change the position of the particle, we have (with 1 meaning the identity operator, which does nothing):
Taylor development gives:
with
From that follows:
This is a differential equation with the solution
Additionally, suppose a Hamiltonian is independent of the position. Because the translation operator can be written in terms of , and , we know that This result means that linear momentum for the system is conserved.
Classically we have for the angular momentum This is the same in quantum mechanics considering and as operators. Classically, an infinitesimal rotation of the vector about the -axis to leaving unchanged can be expressed by the following infinitesimal translations (using Taylor approximation):
From that follows for states:
And consequently:
Using
from above with and Taylor expansion we get:
with the -component of the angular momentum according to the classical cross product.
To get a rotation for the angle , we construct the following differential equation using the condition :
Similar to the translation operator, if we are given a Hamiltonian which rotationally symmetric about the -axis, implies . This result means that angular momentum is conserved.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mécanique quantique le moment cinétique est défini comme un opérateur vectoriel (noté ) à trois composantes, correspondant chacune aux différentes dimensions de l'espace (opérateurs « scalaires »). Celles-ci obéissent entre elles à certaines relations de commutation. Ainsi, alors qu'en mécanique classique les trois composantes du moment cinétique peuvent être simultanément mesurées, ceci est impossible dans le cadre quantique.
Le 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
L'état d'un système physique décrit tous les aspects de ce système, dans le but de prévoir les résultats des expériences que l'on peut réaliser. Le fait que la mécanique quantique soit non déterministe entraîne une différence fondamentale par rapport à la description faite en mécanique classique : alors qu'en physique classique, l'état du système détermine de manière absolue les résultats de mesure des grandeurs physiques, une telle chose est impossible en physique quantique et la connaissance de l'état permet seulement de prévoir, de façon toutefois parfaitement reproductible, les probabilités respectives des différents résultats qui peuvent être obtenus à la suite de la réduction du paquet d'onde lors de la mesure d'un système quantique.
The work presented in this thesis covers two different topics of surface science, both investigated with the scanning tunneling miscroscopy and spectroscopy at low temperatures (5~K). First, we are interested in the spectroscopic properties of physisorbed ...
We expand Hilbert series technologies in effective field theory for the inclusion of massive particles, enabling, among other things, the enumeration of operator bases for non-linearly realized gauge theories. We find that the Higgs mechanism is manifest a ...
Conformal field theories (CFTs) play a very significant role in modern physics, appearing in such diverse fields as particle physics, condensed matter and statistical physics and in quantum gravity both as the string worldsheet theory and through the AdS/C ...