In coding theory and information theory, a binary erasure channel (BEC) is a communications channel model. A transmitter sends a bit (a zero or a one), and the receiver either receives the bit correctly, or with some probability receives a message that the bit was not received ("erased") . A binary erasure channel with erasure probability is a channel with binary input, ternary output, and probability of erasure . That is, let be the transmitted random variable with alphabet . Let be the received variable with alphabet , where is the erasure symbol. Then, the channel is characterized by the conditional probabilities: The channel capacity of a BEC is , attained with a uniform distribution for (i.e. half of the inputs should be 0 and half should be 1). {| class="toccolours collapsible collapsed" width="80%" style="text-align:left"

!Proof
By symmetry of the input values, the optimal input distribution is . The channel capacity is:
Observe that, for the binary entropy function (which has value 1 for input ),
as is known from (and equal to) y unless , which has probability .
By definition , so
}
If the sender is notified when a bit is erased, they can repeatedly transmit each bit until it is correctly received, attaining the capacity . However, by the noisy-channel coding theorem, the capacity of can be obtained even without such feedback.
If bits are flipped rather than erased, the channel is a binary symmetric channel (BSC), which has capacity (for the binary entropy function ), which is less than the capacity of the BEC for . If bits are erased but the receiver is not notified (i.e. does not receive the output ) then the channel is a deletion channel, and its capacity is an open problem.
The BEC was introduced by Peter Elias of MIT in 1955 as a toy example.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.