In probability theory and in particular in information theory, total correlation (Watanabe 1960) is one of several generalizations of the mutual information. It is also known as the multivariate constraint (Garner 1962) or multiinformation (Studený & Vejnarová 1999). It quantifies the redundancy or dependency among a set of n random variables. For a given set of n random variables , the total correlation is defined as the Kullback–Leibler divergence from the joint distribution to the independent distribution of , This divergence reduces to the simpler difference of entropies, where is the information entropy of variable , and is the joint entropy of the variable set . In terms of the discrete probability distributions on variables , the total correlation is given by The total correlation is the amount of information shared among the variables in the set. The sum represents the amount of information in bits (assuming base-2 logs) that the variables would possess if they were totally independent of one another (non-redundant), or, equivalently, the average code length to transmit the values of all variables if each variable was (optimally) coded independently. The term is the actual amount of information that the variable set contains, or equivalently, the average code length to transmit the values of all variables if the set of variables was (optimally) coded together. The difference between these terms therefore represents the absolute redundancy (in bits) present in the given set of variables, and thus provides a general quantitative measure of the structure or organization embodied in the set of variables (Rothstein 1952). The total correlation is also the Kullback–Leibler divergence between the actual distribution and its maximum entropy product approximation . Total correlation quantifies the amount of dependence among a group of variables. A near-zero total correlation indicates that the variables in the group are essentially statistically independent; they are completely unrelated, in the sense that knowing the value of one variable does not provide any clue as to the values of the other variables.
Michael Christoph Gastpar, Amedeo Roberto Esposito
Negar Kiyavash, Seyed Jalal Etesami, Kun Zhang
Maryam Kamgarpour, Andreas Krause, Ilija Bogunovic