Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential pushforward is everywhere injective. Explicitly, f : M → N is an immersion if is an injective function at every point p of M (where TpX denotes the tangent space of a manifold X at a point p in X). Equivalently, f is an immersion if its derivative has constant rank equal to the dimension of M: The function f itself need not be injective, only its derivative must be. A related concept is that of an embedding. A smooth embedding is an injective immersion f : M → N that is also a topological embedding, so that M is diffeomorphic to its image in N. An immersion is precisely a local embedding – that is, for any point x ∈ M there is a neighbourhood, U ⊆ M, of x such that f : U → N is an embedding, and conversely a local embedding is an immersion. For infinite dimensional manifolds, this is sometimes taken to be the definition of an immersion. If M is compact, an injective immersion is an embedding, but if M is not compact then injective immersions need not be embeddings; compare to continuous bijections versus homeomorphisms. A regular homotopy between two immersions f and g from a manifold M to a manifold N is defined to be a differentiable function H : M × [0,1] → N such that for all t in [0, 1] the function Ht : M → N defined by Ht(x) = H(x, t) for all x ∈ M is an immersion, with H0 = f, H1 = g. A regular homotopy is thus a homotopy through immersions. Hassler Whitney initiated the systematic study of immersions and regular homotopies in the 1940s, proving that for 2m < n + 1 every map f : M m → N n of an m-dimensional manifold to an n-dimensional manifold is homotopic to an immersion, and in fact to an embedding for 2m < n; these are the Whitney immersion theorem and Whitney embedding theorem. Stephen Smale expressed the regular homotopy classes of immersions f : M^m \to \R^n as the homotopy groups of a certain Stiefel manifold. The sphere eversion was a particularly striking consequence.