La physique semi-classique est une conception physique qui admet qu'un système puisse être décrit pour une part par les lois de la mécanique quantique et d'autre part par les lois de la physique classique. Il s'agit en général d'une approximation pour faciliter la solution de problèmes quantiques : par exemple la dynamique de systèmes de nombreuses particules quantiques dans des états non intriqués, ou de systèmes dont les actions sont grandes devant le quantum d'action . Avec le recul du temps, on peut considérer les modèles pré-quantiques de l’atome (atome de Bohr, atome de Sommerfeld) comme des modèles semi-classiques obtenus en ajoutant les contraintes de la mécanique ondulatoire de de Broglie aux trajectoires classiques des électrons dans les atomes. vignette|Des grains de pollen : systèmes classiques, semi-classiques ou quantiques ? Un grain de pollen dans le vent développe en une seconde une action S de : le quantum d'action est très très petit. Désormais, il s’agit de techniques utilisées dans la résolution de problèmes avec à N objets quantiques en interaction (problème à N corps quantique), comme le noyau atomique, le nuage des électrons dans les atomes, etc.). En effet, comme cela a été prouvé récemment dans les calculs et expériences de cohérence et dé-cohérence quantique, l’intrication spécifiquement quantique des fonctions d’ondes des objets quantiques est très rapidement détruite dans les systèmes en interaction. La physique classique peut être abordée par un développement en puissances de des opérateurs ou équations de la mécanique quantique ; l'approximation d'ordre 0 correspondant en général à la physique classique, les puissances d'ordre 1 (ou plus) introduisent les aspects non-triviaux. Dans ce cas, il existe un lien clair entre le formalisme de la mécanique quantique et les approximations semi-classiques et classiques associées, similaire en apparence à la transition de l'optique physique à l'optique géométrique.
Riccardo Rattazzi, Alexander Monin, David Pirtskhalava, Fiona Katharina Seibold