ConoïdeEn géométrie, un conoïde est une surface réglée dont toutes les droites (génératrices) sont parallèles à un plan directeur et passent par une droite (l'axe). Lorsque le plan directeur et l'axe sont perpendiculaires, le conoïde est dit droit. Un conoïde est un cas particulier de surface de Catalan. Bien que les conoïdes soient des surfaces réglées, ils ne sont pas développables car leurs surfaces ne contiennent ni portion de plan, de cylindre ou de cône.
Conical surfaceIn geometry, a (general) conical surface is the unbounded surface formed by the union of all the straight lines that pass through a fixed point — the apex or vertex — and any point of some fixed space curve — the directrix — that does not contain the apex. Each of those lines is called a generatrix of the surface. Every conic surface is ruled and developable. In general, a conical surface consists of two congruent unbounded halves joined by the apex.
Canonical bundleIn mathematics, the canonical bundle of a non-singular algebraic variety of dimension over a field is the line bundle , which is the nth exterior power of the cotangent bundle on . Over the complex numbers, it is the determinant bundle of the holomorphic cotangent bundle . Equivalently, it is the line bundle of holomorphic n-forms on . This is the dualising object for Serre duality on . It may equally well be considered as an invertible sheaf.
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Géométrie birationnellethumb|right|Le cercle est birationnellement équivalent à la droite. Un exemple d'application birationnelle est la projection stéréographique, représentée ici ; avec les notations du texte, P a pour abscisse 1/t. En mathématiques, la géométrie birationnelle est un domaine de la géométrie algébrique dont l'objectif est de déterminer si deux variétés algébriques sont isomorphes, à un ensemble négligeable près. Cela revient à étudier des applications définies par des fonctions rationnelles plutôt que par des polynômes, ces applications n'étant pas définies aux pôles des fonctions.
Surface minimaleEn mathématiques et en physique, une surface minimale est une surface minimisant son aire tout en réalisant une contrainte : un ensemble de points, ou le bord de la surface, est d'avance déterminé. Si un cerceau est retiré d'une bassine d'eau savonneuse, un disque de liquide reste fixé. Un souffle dessus déforme légèrement le disque en une calotte sphérique. Si l'étude fait appel à la mécanique des fluides, le traitement mathématique utilise le langage des surfaces minimales.
List of hyperboloid structuresThis page is a list of hyperboloid structures. These were first applied in architecture by Russian engineer Vladimir Shukhov (1853–1939). Shukhov built his first example as a water tower (hyperbolic shell) for the 1896 All-Russian Exposition. Subsequently, more have been designed by other architects, including Le Corbusier, Antoni Gaudí, Eduardo Torroja, Oscar Niemeyer and Ieoh Ming Pei. The shapes are doubly ruled surfaces, which can be classed as: Hyperbolic paraboloids, such as saddle roofs Hyperboloid of one sheet, such as cooling towers Image:Ruled hyperboloid.