In mathematics, the structure tensor, also referred to as the second-moment matrix, is a matrix derived from the gradient of a function. It describes the distribution of the gradient in a specified neighborhood around a point and makes the information invariant respect the observing coordinates. The structure tensor is often used in and computer vision. For a function of two variables p = (x, y), the structure tensor is the 2×2 matrix where and are the partial derivatives of with respect to x and y; the integrals range over the plane ; and w is some fixed "window function" (such as a Gaussian blur), a distribution on two variables. Note that the matrix is itself a function of p = (x, y). The formula above can be written also as , where is the matrix-valued function defined by If the gradient of is viewed as a 2×1 (single-column) matrix, where denotes transpose operation, turning a row vector to a column vector, the matrix can be written as the matrix product or tensor or outer product . Note however that the structure tensor cannot be factored in this way in general except if is a Dirac delta function. In image processing and other similar applications, the function is usually given as a discrete array of samples , where p is a pair of integer indices. The 2D structure tensor at a given pixel is usually taken to be the discrete sum Here the summation index r ranges over a finite set of index pairs (the "window", typically for some m), and w[r] is a fixed "window weight" that depends on r, such that the sum of all weights is 1. The values are the partial derivatives sampled at pixel p; which, for instance, may be estimated from by by finite difference formulas. The formula of the structure tensor can be written also as , where is the matrix-valued array such that The importance of the 2D structure tensor stems from the fact eigenvalues (which can be ordered so that ) and the corresponding eigenvectors summarize the distribution of the gradient of within the window defined by centered at .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.