Concept

Représentation des algèbres de Clifford

Concepts associés (5)
Spin representation
In mathematics, the spin representations are particular projective representations of the orthogonal or special orthogonal groups in arbitrary dimension and signature (i.e., including indefinite orthogonal groups). More precisely, they are two equivalent representations of the spin groups, which are double covers of the special orthogonal groups. They are usually studied over the real or complex numbers, but they can be defined over other fields. Elements of a spin representation are called spinors.
Classification des algèbres de Clifford
En mathématiques, en particulier dans la théorie des formes quadratiques non dégénérées sur les espaces vectoriels réels et complexes, les algèbres de Clifford de dimension finie ont été complètement classées. Dans chaque cas, l'algèbre de Clifford est isomorphe à une algèbre de matrices sur R, C ou H (les quaternions), ou à une somme directe de deux de ces algèbres, mais pas de manière canonique. Notation et conventions. Dans cet article, nous utiliserons la convention de signe (+) pour la multiplication de Clifford, c’est-à-dire où Q est la forme quadratique sur l'espace vectoriel V.
Algèbre de Clifford
En mathématiques, l'algèbre de Clifford est un objet d'algèbre multilinéaire associé à une forme quadratique. C'est une algèbre associative sur un corps, permettant un type de calcul étendu, englobant les vecteurs, les scalaires et des « multivecteurs » obtenus par produits de vecteurs, et avec une règle de calcul qui traduit la géométrie de la forme quadratique sous-jacente. Le nom de cette structure est un hommage au mathématicien anglais William Kingdon Clifford.
Spineur
vignette|Le cube peut tourner continument sans que les ficelles qui le retiennent s'emmêlent. Après un mouvement de 360°, la configuration a changé. Mais au bout de 720° on revient à la position initiale. Un cube "détaché" se comporte comme un vecteur ordinaire, le cube attaché comme un spineur. Formellement, un spineur est un élément d'un espace de représentation pour le groupe spinoriel.
Équation de Dirac
L'équation de Dirac est une équation formulée par Paul Dirac en 1928 dans le cadre de sa mécanique quantique relativiste de l'électron. Il s'agit au départ d'une tentative pour incorporer la relativité restreinte à des modèles quantiques, avec une écriture linéaire entre la masse et l'impulsion. Cette équation décrit le comportement de particules élémentaires de spins demi-entiers, comme les électrons. Dirac cherchait à transformer l'équation de Schrödinger afin de la rendre invariante par l'action du groupe de Lorentz, en d'autre termes à la rendre compatible avec les principes de la relativité restreinte.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.