24-cell honeycombIn four-dimensional Euclidean geometry, the 24-cell honeycomb, or icositetrachoric honeycomb is a regular space-filling tessellation (or honeycomb) of 4-dimensional Euclidean space by regular 24-cells. It can be represented by Schläfli symbol {3,4,3,3}. The dual tessellation by regular 16-cell honeycomb has Schläfli symbol {3,3,4,3}. Together with the tesseractic honeycomb (or 4-cubic honeycomb) these are the only regular tessellations of Euclidean 4-space. The 24-cell honeycomb can be constructed as the Voronoi tessellation of the D4 or F4 root lattice.
Octogrammevignette|Octogramme régulier En géométrie, un octogramme ou étoile à huit branches est un polygone étoilé à huit angles. Le nom octogramme combine le préfixe numérique grec, octo-, avec le suffixe -gram . Le suffixe -gram dérive de γραμμή (grammḗ) signifiant "ligne". gauche|213x213px| Un octagramme régulier avec chaque côté de longueur égale à 1|vignette En général, un octogramme est n'importe quel octogone dont les arêtes s'intersectent. L'octogramme régulier est dénoté par le symbole Schläfli {8/3}, qui signifie une étoile à 8 côtés, reliée un point sur trois.
Truncated tesseractIn geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract. There are three truncations, including a bitruncation, and a tritruncation, which creates the truncated 16-cell. The truncated tesseract is bounded by 24 cells: 8 truncated cubes, and 16 tetrahedra. Truncated tesseract (Norman W. Johnson) Truncated tesseract (Acronym tat) (George Olshevsky, and Jonathan Bowers) The truncated tesseract may be constructed by truncating the vertices of the tesseract at of the edge length.
Rectified tesseractIn geometry, the rectified tesseract, rectified 8-cell is a uniform 4-polytope (4-dimensional polytope) bounded by 24 cells: 8 cuboctahedra, and 16 tetrahedra. It has half the vertices of a runcinated tesseract, with its construction, called a runcic tesseract. It has two uniform constructions, as a rectified 8-cell r{4,3,3} and a cantellated demitesseract, rr{3,31,1}, the second alternating with two types of tetrahedral cells. E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as tC8.
Compound of tesseract and 16-cellIn 4-dimensional geometry, the tesseract 16-cell compound is a polytope compound composed of a regular tesseract and its dual, the regular 16-cell. Its convex hull is the regular 24-cell, which is self-dual. A compound polytope is a figure that is composed of several polytopes sharing a common center. The outer vertices of a compound can be connected to form a convex polytope called its convex hull. The compound is a facetting of the convex hull. In 4-polytope compounds constructed as dual pairs, cells and vertices swap positions and faces and edges swap positions.
Tesseractic honeycombIn four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations (or honeycombs), represented by Schläfli symbol {4,3,3,4}, and constructed by a 4-dimensional packing of tesseract facets. Its vertex figure is a 16-cell. Two tesseracts meet at each cubic cell, four meet at each square face, eight meet on each edge, and sixteen meet at each vertex. It is an analog of the square tiling, {4,4}, of the plane and the cubic honeycomb, {4,3,4}, of 3-space.
Hyperoctahedral groupIn mathematics, a hyperoctahedral group is an important type of group that can be realized as the group of symmetries of a hypercube or of a cross-polytope. It was named by Alfred Young in 1930. Groups of this type are identified by a parameter n, the dimension of the hypercube. As a Coxeter group it is of type B_n = C_n, and as a Weyl group it is associated to the symplectic groups and with the orthogonal groups in odd dimensions. As a wreath product it is where S_n is the symmetric group of degree n.
DuopyramidIn geometry of 4 dimensions or higher, a double pyramid or duopyramid or fusil is a polytope constructed by 2 orthogonal polytopes with edges connecting all pairs of vertices between the two. The term fusil is used by Norman Johnson as a rhombic-shape. The term duopyramid was used by George Olshevsky, as the dual of a duoprism. The lowest dimensional forms are 4 dimensional and connect two polygons. A p-q duopyramid or p-q'' fusil, represented by a composite Schläfli symbol {p} + {q}, and Coxeter-Dynkin diagram .
TriakitétraèdreUn triakitétraèdre est le dual du tétraèdre tronqué d'Archimède ; c'est un des solides de Catalan. Son nom est composé de triakis qui signifie 3 fois. Il est composé d'un tétraèdre régulier sur chacune des faces duquel est posée une pyramide triangulaire droite à base équilatérale et de hauteur égale à fois l'arête de base. Cette hauteur implique que tous les dièdres du triakitétraèdre ont un même angle de . Possédant 12 faces triangulaires isocèles, il fait partie de la famille des dodécaèdres.
Runcinated tesseractsIn four-dimensional geometry, a runcinated tesseract (or runcinated 16-cell) is a convex uniform 4-polytope, being a runcination (a 3rd order truncation) of the regular tesseract. There are 4 variations of runcinations of the tesseract including with permutations truncations and cantellations. The runcinated tesseract or (small) disprismatotesseractihexadecachoron has 16 tetrahedra, 32 cubes, and 32 triangular prisms. Each vertex is shared by 4 cubes, 3 triangular prisms and one tetrahedron.