Hexagramme (géométrie)A hexagram (Greek) or sexagram (Latin) is a six-pointed geometric star figure with the Schläfli symbol {6/2}, 2{3}, or {{3}}. Since there are no true regular continuous hexagrams, the term is instead used to refer to a compound figure of two equilateral triangles. The intersection is a regular hexagon. The hexagram is part of an infinite series of shapes which are compounds of two n-dimensional simplices. In three dimensions, the analogous compound is the stellated octahedron, and in four dimensions the compound of two 5-cells is obtained.
Rectified 600-cellIn geometry, the rectified 600-cell or rectified hexacosichoron is a convex uniform 4-polytope composed of 600 regular octahedra and 120 icosahedra cells. Each edge has two octahedra and one icosahedron. Each vertex has five octahedra and two icosahedra. In total it has 3600 triangle faces, 3600 edges, and 720 vertices. Containing the cell realms of both the regular 120-cell and the regular 600-cell, it can be considered analogous to the polyhedron icosidodecahedron, which is a rectified icosahedron and rectified dodecahedron.
Triacontaèdre rhombique tronquéLe triacontaèdre rhombique tronqué est un polyèdre convexe obtenu par troncature des 12 sommets du triacontaèdre rhombique où 5 faces se rejoignaient. Les 30 faces rhombiques (losanges) deviennent des hexagones non réguliers, et les 12 sommets tronqués deviennent des pentagones réguliers. Les faces hexagonales peuvent être équilatérales, mais non régulières par une symétrie D2. Pour chaque face hexagonale, les angles aux deux sommets de configuration 6.6.6 valent , et aux quatre sommets restants de configuration 5.
Diagramme de SchlegelEn géométrie, un diagramme de Schlegel est une projection d'un polytope de l'espace à d dimensions dans l'espace à d-1 dimensions par un point donné à travers une de ses faces. Il en résulte une division du polytope d'origine dans qui lui est combinatoirement équivalente. Au début du , les diagrammes de Schlegel s'avérèrent être des outils étonnamment pratiques pour l'étude des propriétés topologiques et combinatoires des polytopes.
57-cellIn mathematics, the 57-cell (pentacontakaiheptachoron) is a self-dual abstract regular 4-polytope (four-dimensional polytope). Its 57 cells are hemi-dodecahedra. It also has 57 vertices, 171 edges and 171 two-dimensional faces. The symmetry order is 3420, from the product of the number of cells (57) and the symmetry of each cell (60). The symmetry abstract structure is the projective special linear group, L2(19). It has Schläfli type {5,3,5} with 5 hemi-dodecahedral cells around each edge. It was discovered by .
Hécatonicosachore 5/2,3,3En géométrie, l'hécatonicosachore 5/2,3,3 est un 4-polytope régulier étoilé ayant pour symbole de Schläfli {5/2,3,3}. C'est l'un des 10 polychores de Schläfli-Hess. Il est unique parmi les 10 car il possède 600 sommets, et a la même disposition de sommets que l'hécatonicosachore régulier. C'est l'un des quatre 4-polytopes réguliers étoilés découverts par Ludwig Schläfli. L'hécatonicosachore 5/2,3,3 est la stellation finale de l'hécatonicosachore. En ce sens, il est analogue au grand dodécaèdre étoilé tridimensionnel, qui est la stellation finale du dodécaèdre.
Hexacontaèdre pentagonalUn hexacontaèdre pentagonal est un solide de Catalan, c'est le dual du dodécaèdre adouci. Il possède comme lui deux formes distinctes, qui sont les images dans un miroir l'une de l'autre (ou "énantiomorphes"). Ses faces, uniformes, sont des pentagones non réguliers possédant un axe de symétrie, 3 côtés de même longueur et 4 angles internes égaux. Un exemple de réalisation sur cette base est l'ensemble des trois Amazon Spheres à Seattle ainsi que les Sphère d'Enrichissement qui apparaissent dans le jeu vidéo Portal 2.
Compound of tesseract and 16-cellIn 4-dimensional geometry, the tesseract 16-cell compound is a polytope compound composed of a regular tesseract and its dual, the regular 16-cell. Its convex hull is the regular 24-cell, which is self-dual. A compound polytope is a figure that is composed of several polytopes sharing a common center. The outer vertices of a compound can be connected to form a convex polytope called its convex hull. The compound is a facetting of the convex hull. In 4-polytope compounds constructed as dual pairs, cells and vertices swap positions and faces and edges swap positions.