Concept

Diagramme de Schlegel

Résumé
En géométrie, un diagramme de Schlegel est une projection d'un polytope de l'espace à d dimensions dans l'espace à d-1 dimensions par un point donné à travers une de ses faces. Il en résulte une division du polytope d'origine dans qui lui est combinatoirement équivalente. Au début du , les diagrammes de Schlegel s'avérèrent être des outils étonnamment pratiques pour l'étude des propriétés topologiques et combinatoires des polytopes. En dimension 3, un diagramme de Schlegel consiste en la projection d'un polyèdre sur une figure plane divisée en zones à l'intérieur (représentant les faces du polyèdre d'origine), et en dimension 4, il consiste en une projection d'un polychore dans un polyèdre divisé à l'intérieur en compartiments (représentant les cellules du polychore d'origine). Ainsi les diagrammes de Schlegel sont couramment employés dans le but de visualiser des objets quadridimensionnels. C'est le mathématicien allemand Victor Schlegel (1843–1905) qui en a eu l'idée. Un diagramme de Schlegel ne respecte pas les longueurs du polytope d'origine mais conserve son architecture générale : nombre d'arêtes se rejoignant à un même sommet, nombre de faces se rejoignant à un même sommet, nombre de côtés des faces. Un diagramme de Schlegel peut être construit de deux manières : Comme une vue en perspective à partir d'un point externe du polytope, au-dessus du centre d'une de ses faces. Tous les sommets et toutes les arêtes du polytope sont alors projetées sur l'hyperplan de cette face. thumb|alt=Une projection stéréographique composée de 120 photos|right|Projection stéréographique Si le polytope est convexe, en le projetant d'abord sur une hypersphère de même centre, puis en la projetant stéréographiquement sur un hyperplan (cela revient à retirer une face à la projection sur l'hypersphère et "écarter" par le trou ainsi formé le reste de la projection sphérique jusqu'à l'aplatir sur l'hyperplan).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (1)