Concept

Hexagramme (géométrie)

A hexagram (Greek) or sexagram (Latin) is a six-pointed geometric star figure with the Schläfli symbol {6/2}, 2{3}, or {{3}}. Since there are no true regular continuous hexagrams, the term is instead used to refer to a compound figure of two equilateral triangles. The intersection is a regular hexagon. The hexagram is part of an infinite series of shapes which are compounds of two n-dimensional simplices. In three dimensions, the analogous compound is the stellated octahedron, and in four dimensions the compound of two 5-cells is obtained. It has been historically used in various religious and cultural contexts and as decorative motifs. The symbol was used as a decorative motif in medieval Christian churches and Jewish synagogues. The hexagram is thought to have originated in Buddhism and was also used by Hindus. It was used by Muslims as a mystic symbol in the medieval period, known as the Seal of Solomon, depicted as either a hexagram or pentagram. In mathematics, the root system for the simple Lie group G2 is in the form of a hexagram, with six long roots and six short roots. A six-pointed star, like a regular hexagon, can be created using a compass and a straight edge: Make a circle of any size with the compass. Without changing the radius of the compass, set its pivot on the circle's circumference, and find one of the two points where a new circle would intersect the first circle. With the pivot on the last point found, similarly find a third point on the circumference, and repeat until six such points have been marked. With a straight edge, join alternate points on the circumference to form two overlapping equilateral triangles. A regular hexagram can be constructed by orthographically projecting any cube onto a plane through three vertices that are all adjacent to the same vertex. The twelve midpoints to edges of the cube form a hexagram. For example, consider the projection of the unit cube with vertices at the eight possible binary vectors in three dimensions onto the plane .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.