Specialization (pre)orderIn the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T0 separation axiom, this preorder is even a partial order (called the specialization order). On the other hand, for T1 spaces the order becomes trivial and is of little interest. The specialization order is often considered in applications in computer science, where T0 spaces occur in denotational semantics.
Ordre partiel completIl existe plusieurs notions non équivalentes dordre partiel complet (complete partial order ou CPO). La notion de CPO est utilisée pour résoudre les équations aux domaines, notamment quand on cherche une sémantique dénotationnelle pour un langage en informatique. Les ensembles partiellement ordonnés ne se comportent pas tous comme des ensembles de parties ordonnés par l'inclusion ⊆. En particulier, quand on a une suite croissante de sous-ensembles E0 ⊆ E1 ⊆ E2 ⊆ ..., on peut définir l'union infinie E0 ∪ E1 ∪ E2 ∪ .
Sober spaceIn mathematics, a sober space is a topological space X such that every (nonempty) irreducible closed subset of X is the closure of exactly one point of X: that is, every irreducible closed subset has a unique generic point. Sober spaces have a variety of cryptomorphic definitions, which are documented in this section. All except the definition in terms of nets are described in. In each case below, replacing "unique" with "at most one" gives an equivalent formulation of the T0 axiom.
Complete Heyting algebraIn mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice. Complete Heyting algebras are the of three different ; the category CHey, the category Loc of locales, and its , the category Frm of frames. Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names. Only the morphisms of CHey are homomorphisms of complete Heyting algebras.
Théorie des domainesLa théorie des domaines est une branche des mathématiques dont le principal champ d'application se trouve en informatique théorique. Cette partie de la théorie des ensembles ordonnés a été introduite par Dana Scott pendant les années 1960, afin de fournir le cadre théorique nécessaire à la définition d'une sémantique dénotationnelle du lambda-calcul. Les domaines sont des ensembles partiellement ordonnés.
Topologie de SierpińskiIn mathematics, the Sierpiński space (or the connected two-point set) is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is named after Wacław Sierpiński. The Sierpiński space has important relations to the theory of computation and semantics, because it is the classifying space for open sets in the Scott topology.
Espace de KolmogorovEn topologie et dans d'autres branches des mathématiques, un espace de Kolmogorov (ou espace T0) est un espace topologique dans lequel tous les points peuvent être « distingués du point de vue topologique ». De tous les axiomes de séparation qui peuvent être demandés à un espace topologique, cette condition est la plus faible. Les espaces de Kolmogorov doivent leur nom au mathématicien russe Andreï Kolmogorov. Un espace topologique X est dit de Kolmogorov si pour tout couple d'éléments distincts x et y de X, il existe un voisinage de x qui ne contient pas y ou un voisinage de y qui ne contient pas x.
Catégorie cartésienneUne catégorie cartésienne est, en mathématiques — et plus précisément en théorie des catégories — une catégorie munie d'un objet terminal et du produit binaire. Dans une catégorie cartésienne, la notion de morphisme entre morphismes n'a pas encore de sens. C'est pourquoi l'on définit l'exponentiation, c'est-à-dire l'objet B qui représente l'« ensemble » des morphismes de A dans B. Munie de cette propriété de clôture qu'est l'exponentiation, une catégorie cartésienne devient une catégorie cartésienne fermée.
Sémantique dénotationnelleEn informatique, la sémantique dénotationnelle est une des approches permettant de formaliser la signification d'un programme en utilisant les mathématiques. Parmi les autres approches, on trouve la sémantique axiomatique et la sémantique opérationnelle. Cette discipline a été introduite par Christopher Strachey et Dana Scott. En général, la sémantique dénotationnelle utilise des techniques de programmation fonctionnelle pour décrire les langages informatiques, les architectures et les programmes.
Order theoryOrder theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.