Concept

Specialization (pre)order

Résumé
In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T0 separation axiom, this preorder is even a partial order (called the specialization order). On the other hand, for T1 spaces the order becomes trivial and is of little interest. The specialization order is often considered in applications in computer science, where T0 spaces occur in denotational semantics. The specialization order is also important for identifying suitable topologies on partially ordered sets, as is done in order theory. Definition and motivation Consider any topological space X. The specialization preorder ≤ on X relates two points of X when one lies in the closure of the other. However, various authors disagree on which 'direction' the order should go. What is agreed is that if :x is contained in cl{y},
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Aucun résultat

Personnes associées

Chargement

Unités associées

Aucun résultat

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Aucun résultat