Couvertures Modèles linéaires généralisés, probabilité, déviance, fonctions de liaison, méthodes d'échantillonnage, régression de Poisson, surdispersion et modèles de régression alternatifs.
Couvre les diagnostics de régression pour les modèles linéaires, en soulignant limportance de vérifier les hypothèses et didentifier les valeurs aberrantes et les observations influentes.
Explorer des modèles linéaires généralisés pour les données non gaussiennes, couvrant l'interprétation de la fonction de liaison naturelle, la normalité asymptotique MLE, les mesures de déviance, les résidus et la régression logistique.
Couvre la théorie et les applications des modèles linéaires généralisés, y compris le MLE, les mesures d'ajustement, le rétrécissement et des exemples spéciaux.
Fournit un aperçu des modèles linéaires généralisés, en mettant l'accent sur les modèles de régression logistique et de Poisson, et leur mise en oeuvre dans R.
Explore des exemples spéciaux de modèles linéaires généralisés, couvrant la régression logistique, les modèles de données de comptage, les problèmes de séparation et les relations non paramétriques.