Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore Apache Hive pour l'entreposage de données, les formats de données et la partition, avec des exercices pratiques dans la requête et la connexion à Hive.
Discute de la représentation des données au moyen de modèles et de systèmes, couvrant les modèles mathématiques, les structures de données, les niveaux de modélisation et la gestion des données.
Plonge dans les défis de la publication de données sur les humanités numériques et l'importance des principes de données FAIR pour la gestion des données scientifiques.
Explore la 2ème génération de modèles d'exécution pour l'informatique distribuée, en mettant l'accent sur les ensembles de données distribués Spark et Résilient (RDD).
Couvre les optimisations avancées de Spark, la gestion de la mémoire, les opérations de brassage et les stratégies de partitionnement des données pour améliorer l'efficacité du traitement des données volumineuses.
Explore les défis liés à la manipulation de grandes tailles de données dans l'informatique distribuée et discute des techniques de dégroupage et des stratégies de gestion des défaillances.
Couvre les bases de la programmation scientifique pour les ingénieurs, en soulignant l'importance de GIT pour le travail collaboratif et en fournissant un aperçu des défis du développement de logiciels scientifiques.
Examine la façon dont l'IA/ML façonne le futur lieu de travail, en mettant l'accent sur les systèmes et les processus d'entreprise, et discute de l'état actuel de l'adoption de l'IA/ML dans les entreprises.
Explore la structure des rapports scientifiques et des expériences de titrage à base d'acide, en mettant l'accent sur l'enregistrement précis des données et une présentation claire.