Théorie de la percolationLa théorie de la percolation est une branche de la physique statistique et mathématique qui s'intéresse aux caractéristiques des milieux aléatoires, plus précisément aux ensembles de sommets connectés dans un graphe aléatoire. Cette théorie s'applique notamment en science des matériaux pour formaliser les propriétés d'écoulement dans les milieux poreux et pour la modélisation de phénomènes naturels, comme les incendies. L’histoire de la percolation prend ses racines dans l’industrie du charbon.
Community structureIn the study of complex networks, a network is said to have community structure if the nodes of the network can be easily grouped into (potentially overlapping) sets of nodes such that each set of nodes is densely connected internally. In the particular case of non-overlapping community finding, this implies that the network divides naturally into groups of nodes with dense connections internally and sparser connections between groups. But overlapping communities are also allowed.
Katz centralityIn graph theory, the Katz centrality or alpha centrality of a node is a measure of centrality in a network. It was introduced by Leo Katz in 1953 and is used to measure the relative degree of influence of an actor (or node) within a social network. Unlike typical centrality measures which consider only the shortest path (the geodesic) between a pair of actors, Katz centrality measures influence by taking into account the total number of walks between a pair of actors. It is similar to Google's PageRank and to the eigenvector centrality.
Centralité intermédiaireEn théorie des graphes et théorie des réseaux, la centralité intermédiaire, centralité d'intermédiarité ou intermédiarité est une mesure de centralité d'un sommet d'un graphe. Elle est égale au nombre de fois que ce sommet est sur le chemin le plus court entre deux autres nœuds quelconques du graphe. Un nœud possède une grande intermédiarité s'il a une grande influence sur les transferts de données dans le réseau, sous l'hypothèse que ces transferts se font uniquement par les chemins les plus courts.
Graphe orientéthumb|Un graphe orienté .(Figure 1) Dans la théorie des graphes, un graphe orienté est un couple formé de un ensemble, appelé ensemble de nœuds et un ensemble appelé ensemble d'arêtes. Les arêtes sont alors nommées arcs, chaque arête étant un couple de noeuds, représenté par une flèche. Étant donné un arc , on dit que est l'origine (ou la source ou le départ ou le début) de et que est la cible (ou l'arrivée ou la fin) de . Le demi-degré extérieur (degré sortant) d'un nœud, noté , est le nombre d'arcs ayant ce nœud pour origine.
Réseau biologiqueUn réseau biologique est tout réseau touchant au domaine des systèmes biologiques. Un réseau est un système avec des sous-unités qui sont liées entre elle pour former un tout, comme des espèces formant un réseau alimentaire entier. Les réseaux biologiques fournissent une représentation mathématique des connexions trouvées dans les études écologiques, évolutives et physiologiques, tout comme les réseaux de neurones. L'analyse des réseaux biologiques par rapport aux maladies humaines a conduit au domaine de la médecine des réseaux.
Dual-phase evolutionDual phase evolution (DPE) is a process that drives self-organization within complex adaptive systems. It arises in response to phase changes within the network of connections formed by a system's components. DPE occurs in a wide range of physical, biological and social systems. Its applications to technology include methods for manufacturing novel materials and algorithms to solve complex problems in computation. Dual phase evolution (DPE) is a process that promotes the emergence of large-scale order in complex systems.
Dynamic network analysisDynamic network analysis (DNA) is an emergent scientific field that brings together traditional social network analysis (SNA), link analysis (LA), social simulation and multi-agent systems (MAS) within network science and network theory. Dynamic networks are a function of time (modeled as a subset of the real numbers) to a set of graphs; for each time point there is a graph. This is akin to the definition of dynamical systems, in which the function is from time to an ambient space, where instead of ambient space time is translated to relationships between pairs of vertices.
Biologie computationnelleLa biologie computationnelle (parfois appelée biologie numérique) est une branche de la biologie qui implique le développement et l'application de méthodes d'analyse de données, d'approches théoriques, de modélisation mathématique et de techniques de simulation computationnelle pour étudier des systèmes biologiques, écologiques, comportementaux et sociaux. Le domaine est largement défini et comprend des fondements en biologie, mathématiques appliquées, statistiques, biochimie, chimie, biophysique, biologie moléculaire, génétique, génomique, informatique et évolution.
Matrice creuseDans la discipline de l'analyse numérique des mathématiques, une matrice creuse est une matrice contenant beaucoup de zéros. Conceptuellement, les matrices creuses correspondent aux systèmes qui sont peu couplés. Si on considère une ligne de balles dont chacune est reliée à ses voisines directes par des élastiques, ce système serait représenté par une matrice creuse. Au contraire, si chaque balle de la ligne est reliée à toutes les autres balles, ce système serait représenté par une matrice dense.