Publications associées (100)

Information-Driven Gas Distribution Mapping for Autonomous Mobile Robots

Alcherio Martinoli, Chiara Ercolani, Faezeh Rahbar

The ability to sense airborne pollutants with mobile robots provides a valuable asset for domains such as industrial safety and environmental monitoring. Oftentimes, this involves detecting how certain gases are spread out in the environment, commonly refe ...
MDPI2023

Source-Free Open-Set Domain Adaptation for Histopathological Images via Distilling Self-Supervised Vision Transformer

Jean-Philippe Thiran, Guillaume Marc Georges Vray, Devavrat Tomar

There is a strong incentive to develop computational pathology models to i) ease the burden of tissue typology annotation from whole slide histological images; ii) transfer knowledge, e.g., tissue class separability from the withheld source domain to the d ...
2023

Self-Supervised Bayesian representation learning of acoustic emissions from laser powder bed Fusion process for in-situ monitoring

Christian Leinenbach, Sergey Shevchik, Rafal Wróbel, Marc Leparoux

This study presents a self-supervised Bayesian Neural Network (BNN) framework using air-borne Acoustic Emission (AE) to identify different Laser Powder Bed Fusion (LPBF) process regimes such as Lack of Fusion, conduction mode, and keyhole without ground-tr ...
London2023

Clustering and Informative Path Planning for 3D Gas Distribution Mapping: Algorithms and Performance Evaluation

Alcherio Martinoli, Chiara Ercolani, Lixuan Tang, Ankita Arun Humne

Chemical gas dispersion can represent a severe threat to human and animal lives, as well as to the environment. Constructing a map of the distribution of gas in a fast and reliable manner is critical to ensure accurate monitoring of at-risk facilities and ...
2022

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.