In logic, the formal languages used to create expressions consist of symbols, which can be broadly divided into constants and variables. The constants of a language can further be divided into logical symbols and non-logical symbols (sometimes also called logical and non-logical constants).
The non-logical symbols of a language of first-order logic consist of predicates and individual constants. These include symbols that, in an interpretation, may stand for individual constants, variables, functions, or predicates. A language of first-order logic is a formal language over the alphabet consisting of its non-logical symbols and its logical symbols. The latter include logical connectives, quantifiers, and variables that stand for statements.
A non-logical symbol only has meaning or semantic content when one is assigned to it by means of an interpretation. Consequently, a sentence containing a non-logical symbol lacks meaning except under an interpretation, so a sentence is said to be true or false under an interpretation. These concepts are defined and discussed in the article on first-order logic, and in particular the section on syntax.
The logical constants, by contrast, have the same meaning in all interpretations. They include the symbols for truth-functional connectives (such as "and", "or", "not", "implies", and logical equivalence) and the symbols for the quantifiers "for all" and "there exists".
The equality symbol is sometimes treated as a non-logical symbol and sometimes treated as a symbol of logic. If it is treated as a logical symbol, then any interpretation will be required to interpret the equality sign using true equality; if interpreted as a non-logical symbol, it may be interpreted by an arbitrary equivalence relation.
signature (logic)
A signature is a set of non-logical constants together with additional information identifying each symbol as either a constant symbol, or a function symbol of a specific arity n (a natural number), or a relation symbol of a specific arity.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u
vignette|Symboles mathématiques des deux quantificateurs logiques les plus courants.|236px En mathématiques, les expressions « pour tout » (ou « quel que soit ») et « il existe », utilisées pour formuler des propositions mathématiques dans le calcul des prédicats, sont appelées des quantifications. Les symboles qui les représentent en langage formel sont appelés des quantificateurs (ou autrefois des quanteurs). La quantification universelle (« pour tout ... » ou « quel que soit ... ») se dénote par le symbole ∀ (un A à l'envers).
En logique, une interprétation est une attribution de sens aux symboles d'un langage formel. Les langages formels utilisés en mathématiques, en logique et en informatique théorique ne sont définis dans un premier temps que syntaxiquement ; pour en donner une définition complète, il faut expliquer comment ils fonctionnent et en donner une interprétation. Le domaine de la logique qui donne une interprétation aux langages formels s'appelle la sémantique formelle.
alt=Ce diagramme montre les entités syntaxiques qui peuvent être construits à partir des langages formels. Les symboles et les chaînes de symboles peuvent être divisés en formules bien formées. Un langage formel peut être considéré comme identique à l'ensemble de ses formules bien formées. L'ensemble des formules bien formées peut être divisé en théorèmes et non-théorèmes.|vignette|Ce diagramme montre les entités syntaxiques qui peuvent être construits à partir des langages formels.
Couvre les moteurs d'inférence basés sur la résolution, les clauses Horn, le filtrage et l'unification de l'intelligence artificielle.
Analyse les réponses au quiz sur la logique des prédicats, couvrant les quantificateurs, les implications et les négations.
Introduit le Mathgraph Theorem Prover, montrant son approche unique pour représenter des propositions et organiser des graphiques pour la logique de premier ordre.
In this thesis, we present Stainless, a verification system for an expressive subset of the Scala language.
Our system is based on a dependently-typed language and an algorithmic type checking procedure
which ensures total correctness. We rely on SMT solve ...
EPFL2019
,
In this paper, we question the homogeneity of a large parallel corpus by measuring the similarity between various sub-parts. We compare results obtained using a general measure of lexical similarity based on c2 and by counting the number of discourse conne ...
Temporal–contrastive discourse connectives (although, while, since, etc.) signal various types of relations between clauses such as temporal, contrast, concession and cause. They are often ambiguous and therefore difficult to translate from one language to ...