Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les bases des réseaux neuronaux, des fonctions d'activation, de la formation, du traitement d'image, des CNN, de la régularisation et des méthodes de réduction de dimensionnalité.
Explore l'analyse des composantes principales, la réduction de la dimensionnalité, l'évaluation de la qualité des données et le contrôle du taux d'erreur.
Introduit la classification des documents en utilisant des fonctionnalités telles que les mots et les métadonnées, et des modèles tels que k-Nearest-Neighbors et word embeddings.
Se penche sur les défis de l'apprentissage profond, en explorant la dimensionnalité, les performances et les phénomènes sur-adaptés dans les réseaux neuronaux.
Introduit la méthode k-Nearest Neighbors et l'expansion des fonctionnalités pour l'apprentissage non linéaire de la machine par des transformations polynômes.