In Riemannian geometry, the unit tangent bundle of a Riemannian manifold (M, g), denoted by T1M, UT(M) or simply UTM, is the unit sphere bundle for the tangent bundle T(M). It is a fiber bundle over M whose fiber at each point is the unit sphere in the tangent bundle:
where Tx(M) denotes the tangent space to M at x. Thus, elements of UT(M) are pairs (x, v), where x is some point of the manifold and v is some tangent direction (of unit length) to the manifold at x. The unit tangent bundle is equipped with a natural projection
which takes each point of the bundle to its base point. The fiber π−1(x) over each point x ∈ M is an (n−1)-sphere Sn−1, where n is the dimension of M. The unit tangent bundle is therefore a sphere bundle over M with fiber Sn−1.
The definition of unit sphere bundle can easily accommodate Finsler manifolds as well. Specifically, if M is a manifold equipped with a Finsler metric F : TM → R, then the unit sphere bundle is the subbundle of the tangent bundle whose fiber at x is the indicatrix of F:
If M is an infinite-dimensional manifold (for example, a Banach, Fréchet or Hilbert manifold), then UT(M) can still be thought of as the unit sphere bundle for the tangent bundle T(M), but the fiber π−1(x) over x is then the infinite-dimensional unit sphere in the tangent space.
The unit tangent bundle carries a variety of differential geometric structures. The metric on M induces a contact structure on UTM. This is given in terms of a tautological one-form, defined at a point u of UTM (a unit tangent vector of M) by
where is the pushforward along π of the vector v ∈ TuUTM.
Geometrically, this contact structure can be regarded as the distribution of (2n−2)-planes which, at the unit vector u, is the pullback of the orthogonal complement of u in the tangent space of M. This is a contact structure, for the fiber of UTM is obviously an integral manifold (the vertical bundle is everywhere in the kernel of θ), and the remaining tangent directions are filled out by moving up the fiber of UTM.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Explore la définition des connexions pour les champs vectoriels lisses sur les collecteurs.
Un espace de Finsler est une variété différentielle possédant une métrique asymétrique locale, c'est-à-dire une sur le fibré tangent. Les variétés de Finsler sont donc une généralisation des variétés de Riemann. Le concept a été étudié par Paul Finsler en 1918. Élie Cartan y reconnaitra un (1933). Le lien avec le calcul des variations : la définition métrique mène « directement » à des raisonnements sur les géodésiques, comme solutions à des problèmes de recherches d'extrema. Finsler Geometry The Finsler G
En géométrie différentielle, la forme de Liouville est une 1-forme différentielle naturelle sur le fibré cotangent d'une variété différentielle. Sa dérivée extérieure est une forme symplectique. Elle joue un rôle central en mécanique classique. L'étude de la géométrie du fibré cotangent revêt une importance significative en géométrie symplectique en raison, notamment, du théorème de Weinstein. Si M est une variété différentielle de dimension n, désigne l'espace total du fibré cotangent de M et peut être regardé comme une variété différentielle de dimension 2n.
En géométrie riemannienne, la connexion de Levi-Civita est une connexion de Koszul naturellement définie sur toute variété riemannienne ou par extension sur toute variété pseudo-riemannienne. Ses propriétés caractérisent la variété riemannienne. Notamment, les géodésiques, courbes minimisant localement la distance riemannienne, sont exactement les courbes pour lesquelles le vecteur vitesse est parallèle. De plus, la courbure de la variété se définit à partir de cette connexion ; des conditions sur la courbure imposent des contraintes topologiques sur la variété.
The subject of this thesis lies in the intersection of differential geometry and functional analysis, a domain usually called global analysis. A central object in this work is the group Ds(M) of all orientation preserving diffeomorphisms of a compact manif ...
We discuss general notions of metrics and of Finsler structures which we call weak metrics and weak Finsler structures. Any convex domain carries a canonical weak Finsler structure, which we call its tautological weak Finsler structure. We compute distance ...
We prove a version of Myers-Steenrod's theorem for Finsler manifolds under the minimal regularity hypothesis. In particular we show that an isometry between C-k,C-alpha-smooth (or partially smooth) Finsler metrics, with k + alpha > 0, k is an element of N ...