Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En géométrie riemannienne, la connexion de Levi-Civita est une connexion de Koszul naturellement définie sur toute variété riemannienne ou par extension sur toute variété pseudo-riemannienne. Ses propriétés caractérisent la variété riemannienne. Notamment, les géodésiques, courbes minimisant localement la distance riemannienne, sont exactement les courbes pour lesquelles le vecteur vitesse est parallèle. De plus, la courbure de la variété se définit à partir de cette connexion ; des conditions sur la courbure imposent des contraintes topologiques sur la variété. La connexion de Levi-Civita est appelée en référence au mathématicien italien Tullio Levi-Civita (1873 - 1941) qui a introduit les concepts de transport parallèle pour les besoins de la relativité générale. La considération des surfaces paramétrées permet de comprendre le cheminement qui conduit à la définition de la connexion de Levi-Civita. Soient une surface paramétrée plongée dans l'espace de dimension 3, et et deux champs de vecteurs tangents à cette surface. Le plan tangent admet pour base locale les vecteurs et . Notons et les composantes de dans cette base, et de même pour . On souhaite décrire l'évolution du champ lorsqu'on suit une ligne de champ de , et en particulier définir une dérivation de dans la direction . Plaçons-nous pour cela en un point de la surface, et considérons un déplacement . Ce point n'appartient pas nécessairement à la surface, aussi projetons-le orthogonalement en un point de la surface. On peut penser à définir la dérivée de dans la direction au point comme étant égal à . Mais l'expression de cette limite comporte deux parties. La première, égale à , est une combinaison linéaire des deux vecteurs de la base locale du plan tangent à la surface au point . L'autre est une forme bilinéaire symétrique de et de qui fait intervenir les dérivées secondes de la fonction . Notons-la . Pour obtenir une limite qui soit élément du plan tangent, on projette orthogonalement cette deuxième partie sur le plan tangent.
Jean-François Molinari, Ramin Aghababaei