Résumé
In the mathematical field of complex analysis, a meromorphic function on an open subset D of the complex plane is a function that is holomorphic on all of D except for a set of isolated points, which are poles of the function. The term comes from the Greek meros (μέρος), meaning "part". Every meromorphic function on D can be expressed as the ratio between two holomorphic functions (with the denominator not constant 0) defined on D: any pole must coincide with a zero of the denominator. Intuitively, a meromorphic function is a ratio of two well-behaved (holomorphic) functions. Such a function will still be well-behaved, except possibly at the points where the denominator of the fraction is zero. If the denominator has a zero at z and the numerator does not, then the value of the function will approach infinity; if both parts have a zero at z, then one must compare the multiplicity of these zeros. From an algebraic point of view, if the function's domain is connected, then the set of meromorphic functions is the field of fractions of the integral domain of the set of holomorphic functions. This is analogous to the relationship between the rational numbers and the integers. Both the field of study wherein the term is used and the precise meaning of the term changed in the 20th century. In the 1930s, in group theory, a meromorphic function (or meromorph) was a function from a group G into itself that preserved the product on the group. The image of this function was called an automorphism of G. Similarly, a homomorphic function (or homomorph) was a function between groups that preserved the product, while a homomorphism was the image of a homomorph. This form of the term is now obsolete, and the related term meromorph is no longer used in group theory. The term endomorphism is now used for the function itself, with no special name given to the image of the function. A meromorphic function is not necessarily an endomorphism, since the complex points at its poles are not in its domain, but may be in its range.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.