Résumé
Le théorème de Wick est un outil particulièrement important de la physique statistique, dans la mesure où il permet de calculer des valeurs moyennes d'observables compliquées, par exemple des corrélations ou des interactions à plusieurs particules, en transformant ces moyennes en produit de moyennes d'observables plus simples. Il existe plusieurs formulations du théorème de Wick, plus ou moins bien adaptées aux différents contextes/formalismes de calcul utilisés en physique. Dans cet article nous discutons une version quantique du théorème et de sa preuve, exprimée dans le formalisme de la seconde quantification pour une température quelconque. Les calculs sont volontairement détaillés, et vont sembler lourds à certains lecteurs, cependant ils doivent permettre à une majorité de personnes intéressées par le théorème de Wick de refaire la démonstration. Les objets que nous manipulerons sont des opérateurs et qui respectivement créent ou détruisent une particule dans un état quantique lorsqu'ils agissent sur un espace de Fock, de bosons ou de fermions. Ce sont les opérateurs de création/annihilation de particule. Dans ce formalisme de la seconde quantification, toutes les observables usuelles (tous les opérateurs) peuvent être exprimés en termes de ces opérateurs, par des produits d'un certain nombre de ces . Si on considère une collection , où chaque est une combinaison linéaire des opérateurs précédents, et qu'on nomme le hamiltonien du système, alors la moyenne statistique de l'opérateur \ \ est donnée par : équation (1) où les traces sont prises sur tous les états du système, et où . Le théorème de Wick affirme que si le hamiltonien est quadratique, alors équation (2) où la somme est effectuée sur toutes les manières différentes d'apparier les opérateurs initiaux, en conservant au sein de chaque paire le produit d'opérateurs l'ordre dans lequel ils apparaissaient dans la séquence initiale (par exemple, si on couple et alors pour le facteur correspondant on écrira , mais si on couple et alors pour le facteur correspondant on écrira ).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.