One-dimensional spaceIn physics and mathematics, a sequence of n numbers can specify a location in n-dimensional space. When n = 1, the set of all such locations is called a one-dimensional space. An example of a one-dimensional space is the number line, where the position of each point on it can be described by a single number. In algebraic geometry there are several structures that are technically one-dimensional spaces but referred to in other terms. A field k is a one-dimensional vector space over itself.
Skew linesIn three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. Two lines that both lie in the same plane must either cross each other or be parallel, so skew lines can exist only in three or more dimensions. Two lines are skew if and only if they are not coplanar. If four points are chosen at random uniformly within a unit cube, they will almost surely define a pair of skew lines.
Théorème de plongement de WhitneyEn géométrie différentielle, le théorème de plongement de Whitney fait le lien entre les notions de variété abstraite et de sous-variété de l'espace vectoriel réel Rn : toute variété différentielle de dimension m (à base dénombrable par définition) se plonge dans l'espace euclidien de dimension 2m. Cette valeur 2m peut bien sûr être diminuée dans certains exemples particuliers, comme la sphère. Mais pour l'exemple de l'espace projectif réel de dimension m = 2, la constante 2m est optimale.
Dimension topologiqueEn mathématiques, une dimension topologique est une notion destinée à étendre à des espaces topologiques la notion algébrique de dimension d'un espace vectoriel. C'est un invariant topologique, entier ou infini. Les trois principales dimensions topologiques sont les deux dimensions inductives ind et Ind et la dimension de recouvrement dim. Les dimensions Ind et dim coïncident pour tout espace métrisable ; si l'espace est de plus séparable, ses trois dimensions topologiques sont égales.
Extra dimensionsIn physics, extra dimensions are proposed additional space or time dimensions beyond the (3 + 1) typical of observed spacetime, such as the first attempts based on the Kaluza–Klein theory. Among theories proposing extra dimensions are: Large extra dimension, mostly motivated by the ADD model, by Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali in 1998, in an attempt to solve the hierarchy problem. This theory requires that the fields of the Standard Model are confined to a four-dimensional membrane, while gravity propagates in several additional spatial dimensions that are large compared to the Planck scale.
Cosmologie branaireEn cosmologie et en théorie des cordes, la cosmologie branaire, appelée aussi théorie des cordes et des branes, est un modèle cosmologique dont l'idée principale est que notre univers, et tout ce qu'il contient, serait emprisonné dans une structure appelée brane (une « D3-brane » plus exactement), laquelle serait incluse dans un « super-univers » doté de dimensions supplémentaires et qui pourrait abriter d’autres branes (et donc d’autres univers).
Zero-dimensional spaceIn mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. A graphical illustration of a nildimensional space is a point. Specifically: A topological space is zero-dimensional with respect to the Lebesgue covering dimension if every open cover of the space has a refinement which is a cover by disjoint open sets.
Diagramme de SchlegelEn géométrie, un diagramme de Schlegel est une projection d'un polytope de l'espace à d dimensions dans l'espace à d-1 dimensions par un point donné à travers une de ses faces. Il en résulte une division du polytope d'origine dans qui lui est combinatoirement équivalente. Au début du , les diagrammes de Schlegel s'avérèrent être des outils étonnamment pratiques pour l'étude des propriétés topologiques et combinatoires des polytopes.