Choice functionA choice function (selector, selection) is a mathematical function f that is defined on some collection X of nonempty sets and assigns some element of each set S in that collection to S by f(S); f(S) maps S to some element of S. In other words, f is a choice function for X if and only if it belongs to the direct product of X. Let X = { {1,4,7}, {9}, {2,7} }. Then the function that assigns 7 to the set {1,4,7}, 9 to {9}, and 2 to {2,7} is a choice function on X.
Ensemble de VitaliL'ensemble de Vitali, aussi appelé espace de Vitali, est un exemple simple de partie non mesurable de la droite réelle, découvert en 1905 par le mathématicien Giuseppe Vitali. L'axiome du choix joue un rôle essentiel dans sa construction. Soit la relation deux réels sont en relation si leur différence est un rationnel. Chaque classe d'équivalence élément du groupe quotient R/Q rencontre l'intervalle unité [0, 1]. En effet si on note la partie entière (par défaut) de , et sont équivalents.
Non-measurable setIn mathematics, a non-measurable set is a set which cannot be assigned a meaningful "volume". The mathematical existence of such sets is construed to provide information about the notions of length, area and volume in formal set theory. In Zermelo–Fraenkel set theory, the axiom of choice entails that non-measurable subsets of exist. The notion of a non-measurable set has been a source of great controversy since its introduction. Historically, this led Borel and Kolmogorov to formulate probability theory on sets which are constrained to be measurable.
Espace de Baire (théorie des ensembles)En mathématiques, et plus précisément en topologie générale, l’espace de Baire est le nom donné — d'après René Baire — à l'ensemble de toutes les suites d'entiers, muni d'une certaine topologie. Cet espace est souvent utilisé en théorie descriptive des ensembles, au point que ses éléments sont souvent appelés des « réels ». On le note souvent B, NN, ωω, ou ωω. On appelle espace de Baire, noté NN, le produit cartésien d'un ensemble dénombrable de copies de l'ensemble N des entiers naturels, muni de la topologie produit, où chaque copie de N est munie de la topologie discrète.
Axiome de constructibilitéL'axiome de constructibilité est un des axiomes possibles de la théorie des ensembles affirmant que tout ensemble est constructible. Cet axiome est généralement résumé par = , où représente la classe des ensembles et est l’univers constructible, la classe des ensembles récursivement définissables via un langage approprié.
Trichotomie (mathématiques)En mathématiques, le principe de la trichotomie indique que tout nombre réel est soit positif, soit négatif, soit nul. sur un ensemble X tel que pour tous x et y, seulement l'une des relations suivantes tient: , ou . En notation mathématique, ceci est noté En supposant que la commande est irréflexive et transitive, cela peut être simplifié tel que En logique classique, l'axiome de la trichotomie tient à la comparaison ordinaire entre les nombres réels, et donc aussi pour les comparaisons entre entiers et entre nombres rationnels.
Skolem normal formIn mathematical logic, a formula of first-order logic is in Skolem normal form if it is in prenex normal form with only universal first-order quantifiers. Every first-order formula may be converted into Skolem normal form while not changing its satisfiability via a process called Skolemization (sometimes spelled Skolemnization). The resulting formula is not necessarily equivalent to the original one, but is equisatisfiable with it: it is satisfiable if and only if the original one is satisfiable.