Une réduction polynomiale est un outil d'informatique théorique, plus particulièrement de théorie de la complexité. C'est une classe particulière de réductions particulièrement importante, notamment pour le problème P = NP. Dans le cadre des langages formels pour les problèmes de décision, on dit qu'un langage est réductible en temps polynomial à un langage (noté ) s'il existe une fonction calculable en temps polynomial telle que pour tout , si et seulement si .
En théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
En théorie de la complexité computationnelle, un problème de décision est P-complet (c.-à-d. complet pour la classe de complexité P des problèmes en temps polynomial) s'il est dans P et tout problème dans P peut y être réduit par une réduction en espace logarithmique (d'autres réductions sont aussi utilisées, comme NC). La notion de problème de décision P-complet est utile pour déterminer : quels problèmes sont difficiles à paralléliser efficacement (si on utilise des réductions NC), quels problèmes sont difficiles à résoudre dans un espace limité (si on utilise des réductions en espace logarithmique).
En algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
vignette|Une instance du Sudoku peut être transformée en une formule de logique propositionnelle à satisfaire. Une assignation des variables propositionnelles donne une grille complétée. En informatique théorique, le problème SAT ou problème de satisfaisabilité booléenne est le problème de décision, qui, étant donné une formule de logique propositionnelle, détermine s'il existe une assignation des variables propositionnelles qui rend la formule vraie. Ce problème est important en théorie de la complexité.
En théorie de la complexité, la hiérarchie polynomiale est une hiérarchie de classes de complexité qui étend la notion de classes P, NP, co-NP. La classe PH est l'union de toutes les classes de la hiérarchie polynomiale. Il existe plusieurs définitions équivalentes des classes de la hiérarchie polynomiale. On peut définir la hiérarchie à l'aide des quantificateurs universel () et existentiel ().
In computational complexity theory, a function problem is a computational problem where a single output (of a total function) is expected for every input, but the output is more complex than that of a decision problem. For function problems, the output is not simply 'yes' or 'no'. A functional problem is defined by a relation over strings of an arbitrary alphabet : An algorithm solves if for every input such that there exists a satisfying , the algorithm produces one such , and if there are no such , it rejects.
In computability theory and computational complexity theory, a many-one reduction (also called mapping reduction) is a reduction which converts instances of one decision problem (whether an instance is in ) to another decision problem (whether an instance is in ) using an effective function. The reduced instance is in the language if and only if the initial instance is in its language . Thus if we can decide whether instances are in the language , we can decide whether instances are in its language by applying the reduction and solving .
vignette|300px|Mise en évidence d'un problème NP-difficile si Problème P ≟ NP. Un problème NP-difficile est, en théorie de la complexité, un problème appartenant à la classe NP-difficile, ce qui revient à dire qu'il est au moins aussi difficile que les problèmes les plus difficiles de la classe NP. Ainsi, un problème H est NP-difficile, si tout problème L de la classe NP peut être réduit en temps polynomial à H. Si un problème NP-difficile est dans NP, alors c'est un problème NP-complet.
En informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.