Fonction spécialeL'analyse mathématique regroupe sous le terme de fonctions spéciales un ensemble de fonctions analytiques non élémentaires, qui sont apparues au comme solutions d'équations de la physique mathématique, particulièrement les équations aux dérivées partielles d'ordre deux et quatre. Comme leurs propriétés ont été étudiées extensivement (et continuent de l'être), on dispose à leur sujet d'une multitude d'informations.
CombinatoireEn mathématiques, la combinatoire, appelée aussi analyse combinatoire, étudie les configurations de collections finies d'objets ou les combinaisons d'ensembles finis, et les dénombrements. La combinatoire est en fait présente dans toute l'antiquité en Inde et en Chine. Donald Knuth, dans le volume 4A « Combinatorial Algorithms » de The Art of Computer Programming parle de la génération de n-uplets ; il dit que la génération de motifs combinatoires «a commencé alors que la civilisation elle-même prenait forme» (« began as civilization itself was taking shape»).
Society for Industrial and Applied MathematicsLa Society for Industrial and Applied Mathematics (SIAM), est une association en mathématiques. Fondée en , elle comptait alors une centaine de membres. En , elle compte plus de , surtout en Amérique du Nord, en Extrême-Orient, au Royaume-Uni et en Irlande. Des universités en sont aussi membres.
Réseau de PetriAnimated_Petri_net_commons.gif Un réseau de Petri (aussi connu comme un réseau de Place/Transition ou réseau de P/T) est un modèle mathématique servant à représenter divers systèmes (informatiques, industriels...) travaillant sur des variables discrètes. Les réseaux de Petri sont apparus en 1962, dans la thèse de doctorat de Carl Adam Petri. Les réseaux de Petri sont des outils graphiques et mathématiques permettant de modéliser et de vérifier le comportement dynamique des systèmes à événements discrets comme les systèmes manufacturiers, les systèmes de télécommunications, les réseaux de transport.
Partition d'un entierEn mathématiques, une partition d'un entier (parfois aussi appelée partage d'un entier) est une décomposition de cet entier en une somme d'entiers strictement positifs (appelés parties ou sommants), à l'ordre près des termes (à la différence du problème de composition tenant compte de l'ordre des termes). Une telle partition est en général représentée par la suite des termes de la somme, rangés par ordre décroissant. Elle est visualisée à l'aide de son diagramme de Ferrers, qui met en évidence la notion de partition duale ou conjuguée.
Order theoryOrder theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.
Cantor's first set theory articleCantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably, rather than countably, infinite. This theorem is proved using Cantor's first uncountability proof, which differs from the more familiar proof using his diagonal argument.
Discrete calculusDiscrete calculus or the calculus of discrete functions, is the mathematical study of incremental change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations. The word calculus is a Latin word, meaning originally "small pebble"; as such pebbles were used for calculation, the meaning of the word has evolved and today usually means a method of computation. Meanwhile, calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the study of continuous change.
Combinatoire topologiqueLa combinatoire topologique est un domaine mathématique de la combinatoire qui applique des méthodes topologiques et algébrico-topologiques à la résolution de problèmes en combinatoire. La topologie combinatoire a utilisé des concepts combinatoires en topologie ; au début du , elle est devenue progressivement le domaine de la topologie algébrique. En 1978, la situation s'est inversée, et des méthodes de topologie algébrique ont été utilisées pour résoudre un problème en combinatoire, lorsque László Lovász a prouvé la conjecture de Kneser, initiant ainsi une nouvelle forme de la combinatoire topologique.
László LovászLászló Lovász (né le à Budapest) est un mathématicien hongrois connu pour ses travaux en combinatoire, notamment en théorie des graphes, et informatique théorique et président de l'Académie hongroise des sciences depuis 2014. Il est lauréat du prix Abel 2021. Titulaire d'un doctorat de l'université Loránd Eötvös à Budapest en 1971, il entame une carrière nationale d'enseignant-chercheur. Il occupe ensuite un poste de professeur à l'université Yale de 1993 à 2000, puis collabore en qualité de chercheur au Microsoft Research Center jusqu'en 2006.