Discrete exterior calculusIn mathematics, the discrete exterior calculus (DEC) is the extension of the exterior calculus to discrete spaces including graphs, finite element meshes, and lately also general polygonal meshes (non-flat and non-convex). DEC methods have proved to be very powerful in improving and analyzing finite element methods: for instance, DEC-based methods allow the use of highly non-uniform meshes to obtain accurate results.
Théorie topologique des graphesEn mathématiques, la théorie topologique des graphes est une branche de la théorie des graphes . Elle étudie entre autres les plongements de graphes dans des surfaces, les graphiques en tant qu'espaces topologiques ainsi que les immersions de graphes. Un plongement d'un graphe dans une surface donnée, une sphère par exemple, est une façon de dessiner ce graphe sur cette surface sans que deux arêtes se croisent. Un problème fondamental de la théorie topologique des graphes, souvent présenté comme un casse - tête mathématique, est le problème des trois chalets.
EnumerationAn enumeration is a complete, ordered listing of all the items in a collection. The term is commonly used in mathematics and computer science to refer to a listing of all of the elements of a set. The precise requirements for an enumeration (for example, whether the set must be finite, or whether the list is allowed to contain repetitions) depend on the discipline of study and the context of a given problem. Some sets can be enumerated by means of a natural ordering (such as 1, 2, 3, 4, ...
Géométrie des nombresthumb|right|L'observation de base de la géométrie des nombres : un disque centré en O contient des points du quadrillage (en vert) autres que O seulement s'il est assez grand (c'est le cas du disque violet C', mais pas du disque rose C) En mathématiques, la géométrie des nombres est une discipline qui interprète des problèmes arithmétiques en termes de réseaux discrets et les résout en utilisant des propriétés géométriques. Elle a été fondée à la fin du par Hermann Minkowski.
Suite de polynômes orthogonauxEn mathématiques, une suite de polynômes orthogonaux est une suite infinie de polynômes p0(x), p1(x), p2(x) ... à coefficients réels, dans laquelle chaque pn(x) est de degré n, et telle que les polynômes de la suite sont orthogonaux deux à deux pour un produit scalaire de fonctions donné. Cette notion est utilisée par exemple en cryptologie ou en analyse numérique. Elle permet de résoudre de nombreux problèmes de physique, comme en mécanique des fluides ou en traitement du signal.
DiscrétisationEn mathématiques appliquées, la discrétisation est la transposition d'un état (fonction, modèle, variable, équation) en un équivalent . Ce procédé constitue en général une étape préliminaire à la résolution numérique d'un problème ou sa programmation sur machine. Un cas particulier est la dichotomisation où le nombre de classes discrètes est 2, où on peut approcher une variable continue en une variable binaire. La discrétisation est aussi reliée aux mathématiques discrètes, et compte parmi les composantes importantes de la programmation granulaire.
Variable discrèteIn mathematics and statistics, a quantitative variable may be continuous or discrete if they are typically obtained by measuring or counting, respectively. If it can take on two particular real values such that it can also take on all real values between them (even values that are arbitrarily close together), the variable is continuous in that interval. If it can take on a value such that there is a non-infinitesimal gap on each side of it containing no values that the variable can take on, then it is discrete around that value.
DiophantienL'adjectif diophantien () (du nom de Diophante d'Alexandrie) s'applique à tout ce qui concerne les équations polynomiales à coefficients entiers, également appelées équations diophantiennes. Les notions qui suivent ont été développées pour venir à bout du dixième problème de Hilbert. Il s'agit de savoir s'il existe un algorithme général permettant de dire si, oui ou non, il existe une solution à une équation diophantienne. Le théorème de Matiyasevich prouve l'impossibilité de l'existence d'un tel algorithme.
Preuve par bijectionEn mathématiques, une preuve par bijection (ou démonstration par bijection) est une technique de démonstration qui consiste à obtenir l'égalité de deux expressions entières en exhibant une bijection entre deux ensembles dont les deux expressions sont les cardinaux. Autrement dit, on examine deux ensembles finis X et Y, on les dénombre et au moyen d'une bijection de X sur Y, on en déduit que les résultats des comptages sont égaux. On présente souvent la démonstration en disant qu'on a transformé le problème de dénombrement en un problème équivalent.
Combinatoire analytiqueEn mathématiques, et plus précisément en combinatoire, la combinatoire analytique (en analytic combinatorics) est un ensemble de techniques décrivant des problèmes combinatoires dans le langage des séries génératrices, et s'appuyant en particulier sur l'analyse complexe pour obtenir des résultats asymptotiques sur les objets combinatoires initiaux. Les résultats de combinatoire analytique permettent notamment une analyse fine de la complexité de certains algorithmes.