In geometry, the line element or length element can be informally thought of as a line segment associated with an infinitesimal displacement vector in a metric space. The length of the line element, which may be thought of as a differential arc length, is a function of the metric tensor and is denoted by .
Line elements are used in physics, especially in theories of gravitation (most notably general relativity) where spacetime is modelled as a curved Pseudo-Riemannian manifold with an appropriate metric tensor.
The coordinate-independent definition of the square of the line element ds in an n-dimensional Riemannian or Pseudo Riemannian manifold (in physics usually a Lorentzian manifold) is the "square of the length" of an infinitesimal displacement (in pseudo Riemannian manifolds possibly negative) whose square root should be used for computing curve length:
where g is the metric tensor, · denotes inner product, and dq an infinitesimal displacement on the (pseudo) Riemannian manifold. By parametrizing a curve , we can define the arc length of the curve length of the curve between , and as the integral:
To compute a sensible length of curves in pseudo Riemannian manifolds, it is best to assume that the infinitesimal displacements have the same sign everywhere. E.g. in physics the square of a line element along a timeline curve would (in the signature convention) be negative and the negative square root of the square of the line element along the curve would measure the proper time passing for an observer moving along the curve.
From this point of view, the metric also defines in addition to line element the surface and volume elements etc.
Since is arbitrary "square of the arc length" completely defines the metric, it is therefore usually best to consider the expression for as a definition of the metric tensor itself, written in a suggestive but non tensorial notation:
This identification of the square of arc length with the metric is even more easy to see in n-dimensional general curvilinear coordinates q = (q1, q2, q3, .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour
résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
Calcul différentiel et intégral.
Eléments d'analyse complexe.
Explore l'interprétation géométrique des tenseurs de contraintes et des angles entre les vecteurs près d'un point.
Explore les opérateurs différentiels, les courbes régulières, les normes et les fonctions injectives, en répondant aux questions sur les propriétés, les normes, la simplicité et l'injectivité des courbes.
Couvre les définitions du gradient et de la divergence, y compris le système de coordonnées cartésiennes et le théorème de divergence.
En relativité restreinte et en relativité générale, une métrique est un invariant relativiste infinitésimal ayant la dimension d'une longueur. Mathématiquement, il s'agit d'un tenseur métrique relatif à la variété différentielle représentant l'espace-temps physique. En relativité générale, une métrique dans un référentiel contient toutes les informations sur la gravitation telle qu'elle y est perçue. Une métrique d'espace-temps s'exprime sous la forme d'une somme algébrique de carrés de formes différentielles linéaires.
En géométrie, le vecteur position, ou rayon vecteur, est le vecteur qui sert à indiquer la position d'un point par rapport à un repère. L'origine du vecteur se situe à l'origine fixe du repère et son autre extrémité à la position du point. Si l'on note M cette position et O l'origine, le vecteur position se note . On le note aussi ou . En physique, le vecteur déplacement d'un point matériel ou d'un objet est le vecteur reliant une ancienne position à une nouvelle, donc le vecteur position final moins le vecteur position initial.
En mathématiques, les coordonnées orthogonales sont définies comme un ensemble de d coordonnées q = (q1, q2..., qd) dans lequel toutes les surfaces coordonnées se rencontrent à angle droit. Une surface coordonnée particulière de coordonnée qk est une courbe, une surface ou une hypersurface sur laquelle chaque qk est une constante. Par exemple, le système de coordonnées cartésiennes de dimension 3 (x, y, z) est un système de coordonnées orthogonales puisque ses surfaces coordonnées x = constante, y = constante et z = constante sont des plans deux à deux perpendiculaires.
Isogeometric Analysis (IGA) is a computational methodology for the numerical approximation of Partial Differential Equations (PDEs). IGA is based on the isogeometric concept, for which the same basis functions, usually Non-Uniform Rational B-Splines (NURBS ...
2015
The explosive growth of machine learning in the age of data has led to a new probabilistic and data-driven approach to solving very different types of problems. In this paper we study the feasibility of using such data-driven algorithms to solve classic ph ...
In this article, we disprove a conjecture of Goemans and Linial; namely, that every negative type metric embeds into ℓ1 with constant distortion. We show that for an arbitrarily small constant δ > 0, for all large enough n, there is an n-point negative ...