Vertex arrangementIn geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a square vertex arrangement is understood to mean four points in a plane, equal distance and angles from a center point. Two polytopes share the same vertex arrangement if they share the same 0-skeleton. A group of polytopes that shares a vertex arrangement is called an army. The same set of vertices can be connected by edges in different ways.
Hyperoctaèdrethumb|Diagramme de Schlegel de l'hexadécachore, hyperoctaèdre en dimension 4. Un hyperoctaèdre est, en géométrie, un polytope régulier convexe, généralisation de l'octaèdre en dimension quelconque. Un hyperoctaèdre de dimension n est également parfois nommé polytope croisé, n-orthoplexe ou cocube. Un hyperoctaèdre est l'enveloppe convexe des points formés par toutes les permutations des coordonnées (±1, 0, 0, ..., 0). En dimension 1, l'hyperoctaèdre est simplement le segment de droite [-1, +1] ; en dimension 2, il s'agit d'un carré de sommets {(1, 0), (-1, 0), (0, 1), (0, -1)}.
Regular 4-polytopeIn mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
Truncation (geometry)In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids. In general any polyhedron (or polytope) can also be truncated with a degree of freedom as to how deep the cut is, as shown in Conway polyhedron notation truncation operation. A special kind of truncation, usually implied, is a uniform truncation, a truncation operator applied to a regular polyhedron (or regular polytope) which creates a resulting uniform polyhedron (uniform polytope) with equal edge lengths.
Real coordinate spaceIn mathematics, the real coordinate space of dimension n, denoted Rn or , is the set of the n-tuples of real numbers, that is the set of all sequences of n real numbers. Special cases are called the real line R1 and the real coordinate plane R2. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors. The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the vector space.
HexadécachoreL'hexadécachore est, en géométrie, un 4-polytope régulier convexe, c'est-à-dire un polytope à 4 dimensions à la fois régulier et convexe. Il est constitué de 16 cellules tétraédriques. L'hexadécachore est l'hyperoctaèdre de dimension 4. Son dual est le tesseract (ou hypercube). Il pave l'espace euclidien à quatre dimensions.
Polytope régulierdroite|vignette|Le dodécaèdre régulier, un des cinq solides platoniciens. En mathématiques, plus précisément en géométrie ou encore en géométrie euclidienne, un polytope régulier est une figure de géométrie présentant un grand nombre de symétries. En dimension deux, on trouve par exemple le triangle équilatéral, le carré, les pentagone et hexagone réguliers, etc. En dimension trois se rangent parmi les polytopes réguliers le cube, le dodécaèdre régulier (ci-contre), tous les solides platoniciens.
Hypercubic honeycombIn geometry, a hypercubic honeycomb is a family of regular honeycombs (tessellations) in n-dimensional spaces with the Schläfli symbols {4,3...3,4} and containing the symmetry of Coxeter group R_n (or B^~_n–1) for n ≥ 3. The tessellation is constructed from 4 n-hypercubes per ridge. The vertex figure is a cross-polytope {3...3,4}. The hypercubic honeycombs are self-dual. Coxeter named this family as δ_n+1 for an n-dimensional honeycomb. A Wythoff construction is a method for constructing a uniform polyhedron or plane tiling.
Pavage trihexagonalLe pavage trihexagonal est, en géométrie, un pavage semi-régulier du plan euclidien, constitué de triangles équilatéraux et d'hexagones. Au Japon, ce pavage est utilisé en vannerie sous le nom de Kagomé. En physique, ce pavage est appelé réseau de Kagomé d'après le terme japonais. On l'observe dans la structure cristalline de certains matériaux, notamment l'herbertsmithite. Il est très étudié en magnétisme car sa frustration géométrique génère des phases magnétiques exotiques, comme le liquide de spin. Tri
Tesseractic honeycombIn four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations (or honeycombs), represented by Schläfli symbol {4,3,3,4}, and constructed by a 4-dimensional packing of tesseract facets. Its vertex figure is a 16-cell. Two tesseracts meet at each cubic cell, four meet at each square face, eight meet on each edge, and sixteen meet at each vertex. It is an analog of the square tiling, {4,4}, of the plane and the cubic honeycomb, {4,3,4}, of 3-space.