droite|vignette|Le dodécaèdre régulier, un des cinq solides platoniciens. En mathématiques, plus précisément en géométrie ou encore en géométrie euclidienne, un polytope régulier est une figure de géométrie présentant un grand nombre de symétries. En dimension deux, on trouve par exemple le triangle équilatéral, le carré, les pentagone et hexagone réguliers, etc. En dimension trois se rangent parmi les polytopes réguliers le cube, le dodécaèdre régulier (ci-contre), tous les solides platoniciens. On pourrait également citer des exemples pour des espaces de dimension plus élevée. Le cercle et la sphère, qui présentent un degré de symétrie très élevé, n'en sont pas pour autant considérés comme des polytopes, car ils n'ont pas de face plate. La très forte propriété de symétrie des polytopes réguliers leur confère une valeur esthétique qui fascine tant les mathématiciens que les non mathématiciens. Plusieurs des polytopes réguliers de dimension deux et trois se rencontrent dans la nature et sont connus depuis la Préhistoire. C'est aux mathématiciens grecs de l'Antiquité, notamment Euclide, qu'on en doit le plus ancien traitement mathématique connu. En effet, Euclide rédigea une somme sur les connaissances mathématiques de son temps, qu'il publia sous le titre des Éléments. Ce travail présente une construction d'une géométrie cohérente et d'une théorie des nombres, et se conclut par la description mathématique des cinq solides platoniciens. De nombreux siècles après Euclide, la définition des polytopes réguliers était demeurée inchangée. Pourtant, cette définition sera ensuite progressivement élargie, par à-coups, de façon à englober de plus en plus d'objets nouveaux. Au milieu du deuxième millénaire, les cinq solides platoniciens originaux furent rejoints par les polyèdres de Kepler-Poinsot. À la fin du , les mathématiciens commencèrent à prendre en compte des polytopes réguliers en dimension quatre et plus, ainsi l'hypercube et le polytope à 24 cellules.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (35)
Regular 4-polytope
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
Pentachore
En géométrie euclidienne de dimension quatre, le pentachore, ou 5-cellules, aussi appelé un pentatope ou 4-simplexe, est le polychore régulier convexe le plus simple. C'est la généralisation d'un triangle du plan ou d'un tétraèdre de l'espace. Le pentachore est constitué de 5 cellules, toutes des tétraèdres. C'est un polytope auto-dual. Sa figure de sommet est un tétraèdre. Son intersection maximale avec l'espace tridimensionnel est le prisme triangulaire. Le symbole de Schläfli du pentachore est {3,3,3}.
Hexadécachore
L'hexadécachore est, en géométrie, un 4-polytope régulier convexe, c'est-à-dire un polytope à 4 dimensions à la fois régulier et convexe. Il est constitué de 16 cellules tétraédriques. L'hexadécachore est l'hyperoctaèdre de dimension 4. Son dual est le tesseract (ou hypercube). Il pave l'espace euclidien à quatre dimensions.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.