Concepts associés (17)
Transformation naturelle
En théorie des catégories, une transformation naturelle permet de transformer un foncteur en un autre tout en respectant la structure interne (c'est-à-dire la composition des morphismes) des catégories considérées. On peut ainsi la voir comme un morphisme de foncteurs. Soient et deux catégories, F et G deux foncteurs covariants de dans .
Forme bilinéaire
En mathématiques, plus précisément en algèbre linéaire, une forme bilinéaire est une application qui à un couple de vecteurs associe un scalaire, et qui a la particularité d'être linéaire en ses deux arguments. Autrement dit, étant donné un espace vectoriel V sur un corps commutatif K, il s'agit d'une application f : V × V → K telle que, pour tous et tous , Les formes bilinéaires sont naturellement introduites pour les produits scalaires.
Espace vectoriel conjugué
En algèbre linéaire, l'espace vectoriel conjugué d'un espace vectoriel complexe est un nouvel espace vectoriel obtenu en modifiant la définition du produit par les scalaires. Soit un espace vectoriel sur le corps C des nombres complexes. On appelle espace vectoriel conjugué de , l'ensemble E muni de la même opération d'addition + et du produit par les scalaires défini par : où désigne le conjugué du nombre complexe λ. Le triplet est également un espace vectoriel complexe, appelé conjugué de et de même dimension sur C.
Notation bra-ket
La notation bra-ket a été introduite par Paul Dirac en 1939 (on l'appelle aussi formalisme de Dirac) pour faciliter l’écriture des équations de la mécanique quantique, mais aussi pour souligner l’aspect vectoriel de l’objet représentant un état quantique. Le nom provient d'un jeu de mots avec le terme anglais bracket qui signifie « crochet de parenthèse », en l'occurrence « » et « » qui avec l'adjonction d'une barre verticale « » sont respectivement appelés « bra » et « ket ».
Matrice transposée
En mathématiques, la matrice transposée (ou la transposée) d'une matrice est la matrice , également notée ou , obtenue en échangeant les lignes et les colonnes de . Plus précisément, si on note pour et pour les coefficients respectivement de et de alors pour tout on a . Par exemple, si alors On suppose ici que K est un anneau commutatif. On note et deux matrices quelconques de et un scalaire. L'application « transposition » est linéaire : La transposée de est . Par conséquent, l'application « transposition » est bijective.
Dual system
In mathematics, a dual system, dual pair, or duality over a field is a triple consisting of two vector spaces and over and a non-degenerate bilinear map . Duality theory, the study of dual systems, is part of functional analysis. It is separate and distinct to Dual-system Theory in psychology. Pairings A or pair over a field is a triple which may also be denoted by consisting of two vector spaces and over (which this article assumes is the field either of real numbers or the complex numbers ).
Antilinear map
In mathematics, a function between two complex vector spaces is said to be antilinear or conjugate-linear if hold for all vectors and every complex number where denotes the complex conjugate of Antilinear maps stand in contrast to linear maps, which are additive maps that are homogeneous rather than conjugate homogeneous. If the vector spaces are real then antilinearity is the same as linearity.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.